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Chapter 1

Introduction

Over the last few years, synthetic quantum systems of Rydberg atoms, trapped ions, supercon-
ducting qubits, quantum dots, etc, have reached a new era: Programmable coherent interactions
can be implemented between tens of particles, and in highly tunable geometries [1]. These ex-
perimental breakthroughs raise important prospects for quantum simulation, where models that
are fundamental for condensed matter or high-energy physics [1] can be experimentally realized,
and probed with a unique level of control. Synthetic quantum systems can be also used to build
quantum computers, with two-level atoms or anharmonic quantum circuits encoding quantum bits.
These devices offer the prospect to outperform classical computers, in particular to solve “hard”
classical optimization problems [2].

A central aspect for the future of quantum simulation and quantum computing is the develop-
ment of experimental tools to probe a new generation of many-body quantum states, which could
not be realized so far. Such quantum states, involving tens of particles, are described by an expo-
nentially large Hibert space. But how to measure in an experiment the physical properties related
to this enormous amount of quantum information?

The measurement problem for large-scale quantum technologies represents both a conceptual
and a technological challenge. The first method that comes to mind to measure a quantum system is
quantum state tomography. This consists in performing all the measurements needed to reconstruct
the density matrix ρ of the system, describing all the physical properties of the quantum state. For
a quantum computer with n quantum bits (qubits), the required total number of ‘single-shot’
measurements to measure ρ is of the order of 4n [3]. As a consequence, tomography is typically not
feasible for more than 8− 10 qubits [4].

Several strategies have been proposed to reduce the number of measurements to perform state
tomography. If the state is close to a pure state, i.e., the underlying density matrix has low rank,
one can use compressed sensing methods to reduce the number of measurements [3]. If the state
has a low level of entanglement, we can write the density matrix in good approximation as the
contraction of a Matrix-Product-State (MPS). MPS tomography is ‘efficient’ in the sense that the
number of measurements is polynomial in system size [5, 6]. Finally, if we assume that the state can
be described by an ansatz with few parameters, we can rely on neural networks to reconstruct the
density matrix based on few measurements compared to standard tomography [7]. While we have
seen in recent years a very significant effort to extend techniques based on machine learning-based
methods, it is not clear at the moment which level of assumption (mixed state, positive coefficients,
low entanglement) is required to make these algorithms relevant in different physical scenarios [8].
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Approach Type of measured quan-
tities

Applicability

Standard Tomography Density Matrix ρ Small systems
Compressed sensing, MPS
and Neural Network Tomo-
graphy

State or Density matrix Designed for specific states

Randomized benchmarking Error rate
Entanglement Witnesses Correlations, Bell inequali-

ties,. . .
Designed for specific states

Direct Fidelity estimation
Cross-Entropy benchmark-
ing

Fidelity w.r.t theory state The state can be represented
classically

Multiple copies Entanglement entropies Requires two identical sys-
tems

Randomized measure-
ments

Entanglement entropies, fi-
delities, scrambling, topo-
logical invariants,. . .

Moderate partition sizes

Figure 1.1: Non-exhaustive list of methods for probing quantum technologies. Our approach is
randomized measurements, with the goal to measure, without multiple copies, universal physical
quantities associated with entanglement.

1.1 Benchmarking quantum computers

Quantum computers now operate in the regime of the ‘quantum advantage’ with more than 50
qubits [9]. This means that quantum computers have not offered yet a practical advantage over
classical computers. However, they can implement a quantum circuit that cannot be classically
simulated for a reasonable amount of time, and hardware resources. Such claim of quantum ad-
vantage could not have been made without the possibility to benchmark quantum computers. This
consists in assessing the level of errors in the realization of the quantum circuit. As quantum state
tomography is not an option for such large systems, one can measure such errors using different
approaches. In randomized benchmarking (RB) [10], the strategy consists in using random circuits
that implement a gate sequence that is then time-inverted. Emerson and colleagues have shown
that average gate errors can be extracted from the overlap between the final and the initial state
(overlap one meaning that no errors occured), and that this estimation can be realized in large
quantum devices. This provides a direct test of the average expected performance of a quantum
computer that complements approaches based on listing quantum hardware specificities (e.g., ‘the
quantum volume’ used by the companies IBM [11] and Honeywell [12]). However, RB is not relevant
for assessing the faithful realization of a single quantum circuit (or Hamiltonian, as encountered in
quantum simulation).

Another direct test of quantum computers consists in measuring the fidelity in the preparation
of a given quantum state [13, 9, 14]. Obviously, this approach cannot be applied in the regime of
quantum advantage, as the ideal state must be calculated and represented classically in order to
allow for comparison with the quantum device.

1.2 Measuring physics properties associated with entanglement

Instead of trying to reconstruct the quantum state or to benchmark errors, one can also probe
many-body quantum systems by measuring physical properties, independently of a certain type of
quantum computing architecture and of classical simulations. In particular, I have been interested
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A B E

Figure 1.2: A quantum system, here represented as a lattice system, with a bipartition A and B,
and environnement E.

over the last years in the challenge of probing entanglement, which describes to which extent a many-
body quantum state cannot be written as a classical ‘product’ state (say of two spatially separated
subsystems). First, the idea of measuring entanglement is very relevant to benchmark quantum
computers, as it demontrates the most elementary of the quantum properties, independently of
the model, assumptions on the state, classical simulations, etc. We also know that the states
with a low level of entanglement are the ones that can be simulated by a classical computer [15].
This means that only quantum computers featuring a large amount of entanglement can indeed
offer new possibilities w.r.t. classical devices. Finally, on the physics side, entanglement can also
unravel universal properties of the dynamics of quantum computers, deep in the regime of quantum
advantage [16].

In the framework of quantum simulation of condensed matter and high-energy physics theories,
the universal properties of entanglement describing quantum matter in-/(out-of-) equilibrium have
raised significant interest. In particular, the physical quantities associated with entanglement have
been shown to have the ability to describe as ‘non-local order parameters’ key features of many
quantum phases and quantum phase transitions [15, 17]. We describe some illustrative examples
below.

1.2.1 Bipartite entanglement

Let us now introduce the concept of bipartite entanglement. For this, one considers a quantum
system, which is divided into two parts A and B, e.g a set of spins 1/2 (qubits), c.f Fig. 1.2. We
also denote E the environnement, so that we can consider, without any loss of generality, that the
combined state of A, B and E is described by a wavefunction |ψ〉 of a pure quantum state. For
example, in the case of decoherence affecting the system, phonons, photons,. . . , are included in the
environment part E of the wavefunction.

All the physical properties of A and B are described by the reduced density matrix

ρAB = trE(|ψ〉 〈ψ|), (1.1)

which is obtained by tracing all the degree of freedoms of the environment E. Similarly, we define
the reduced density matrices ρA = trBE(|ψ〉 〈ψ|), and ρB = trAE(|ψ〉 〈ψ|) of A and B, respectively.

Pure states

The concept of bipartite entanglement between A and B can be easily understood by first assuming
that the reduced state ρAB is pure: ρAB = |ψAB〉 〈ψAB| (or, equivalently, that we can ‘factorize’
the state of the environment, i.e., |ψ〉 = |ψAB〉 ⊗ |ψE〉).

A pure state is said to be separable if |ψAB〉 can be written as a product state [18].

|ψAB〉 = |ψA〉 ⊗ |ψB〉 . (1.2)

Conversely, a state which is not separable is said to be entangled.
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Note that any pure quantum state can always be decomposed via a Schmidt decomposition as
a mixture of product states [18]

|ψAB〉 =
∑

i

√
λ(i)eiϕ

(i) |ψ(i)
A 〉 ⊗ |ψ

(i)
B 〉 , (1.3)

with (λ(i) the Schmidt spectrum. Here,
∑

i λi = 1 and the states |ψ(i)
A,B〉 are normalized and orthog-

onal to each other. According to the decomposition, a separable state is made of a single Schmidt
value λ1 = 1, while entangled states possess at least two non-zero Schmidt values. The Schmidt
decomposition plays a key role for determining the ability for classical computers to simulate quan-
tum system: Tensor-network algorithms can only handle a given number of Schmidt values, i.e.,
this means they can only simulate the dynamics of ‘low’ entangled states [19].

Mixed states

A mixed state is said to be separable if it can be written as a sum of product states [18]

ρAB =
∑

k

pk

(
ρ
(k)
A ⊗ ρ

(k)
B

)
, (1.4)

with positive coefficients 0 ≤ pk ≤ 1. Conversely, a mixed state that cannot be written as in
Eq. (1.4) is declared to be entangled.

Consider an arbitrary quantum state ρAB. The question of whether a decomposition of the form
of Eq. (1.4) exists, i.e, whether the state is entangled or not is one of the most important problems
in quantum information theory [18]. Let us present now different strategies that were introduced
to address the challenge of detecting and quantifying entanglement.

1.2.2 Entanglement witnesses

Certain expectation values of observables, known as entanglement witnesses, can be used to demon-
strate that a state is entangled [18]. When the state under study can be written analytically, it
is in particular possible to derive an entanglement witness, such as a Bell inequality, which can
be then measured in an experiment to certify the presence of entanglement [20], while relaxing
certain assumptions on the measurement devices [21, 22]. It is also possible to collect data in the
experiment that can be used to derive numerically a potential entanglement witness [23].

In order to simplify the experimental task of detecting entanglement, and having in mind the
scenario of quantum simulation and quantum computation with many different types of a priori
unknown entangled quantum states being created, it seems thus important to complement the
approach of entanglement witnessess, and consider entanglement tests that can detect entanglement
without prior knowledge on the state.

1.2.3 Detecting entanglement via entanglement entropies

In contrast to entanglement witnesses, entanglement entropies can be used in a complete state-
agnostic manner. More importantly, entanglement entropies also quantify the amount of entangle-
ment present in a system.

First, the concept of bipartite entanglement can be easily formulated in terms of entanglement
entropies [15], such as the von-Neumann entropy

S(ρ) = −tr(ρ log(ρ)), (1.5)
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and, more generally, the Rényi entropies

Sα(ρ) =
1

1− α log tr(ρα), (1.6)

which includes the von-Neuman entropy S1 ≡ limα→1 Sα = S. Here, we use log = log2.

Pure states

For pure states, it is convenient to consider the Schmidt decomposition Eq. (1.3), and write the
reduced density matrix of a subsystem X = A,B (by tracing over the complement)

ρX =
∑

i

λ(i) |ψ(i)
X 〉 〈ψ

(i)
X | . (1.7)

Hence, a separable state, characterized by a single Schmidt value λ(i) = 1, leads to pure reduced
states tr(ρ2X) = 1. Conversely, entangled states give rise to mixed reduced states tr(ρ2X) < 1.
Moreover, as the entropies of the reduced states are

Sα(ρX) =
1

1− α log
∑

i

(
λ(i)
)α

. (1.8)

Therefore a pure state is entangled if and only if the entanglement entropies of the reduced states
are larger than zero.

The von-Neuman entropy satisfies the required mathematical properties, associated with an en-
tanglement measure [24]. In particular, the von-Neuman entropy is a strict entanglement monotone,
which means that it cannot grow under local operation and classical communication (LOCC) oper-
ations. Other Rényi entropies for α > 1 provide bounds to the von-Neumann entropy, and they also
satisfy some of the properties of an entanglement measure (like monotonicity under LOCC [24]).

Mixed states

For mixed states, entanglement entropies are not entanglement measures, but they can still be used
for detecting entanglement [25, 26, 18]. We restrict here to the case of the second Rényi entropy.
If a state is separable then we can prove that it implies that

S2(ρAB) ≥ S2(ρA), (1.9)

with the same inequality holding for S2(ρB). The proof consists in using Eq. (1.4), and write

tr(ρ2AB) =
∑

k,k′

pkpk′tr(ρ
(k)
A ρ

(k′)
A )tr(ρ

(k)
B ρ

(k′)
B ). (1.10)

Let us now write the eigenstates decomposition of the reduced density matrix

ρ
(k)
B =

∑

i

λ
(i,k)
B |ψ(i,k)

B 〉 〈ψ(i,k)
B | , (1.11)

with
∑

i λ
(i,k)
B = 1. This allows us to bound the overlap terms as

tr(ρ
(k)
B ρ

(k′)
B ) =

∑

i,i′

λ
(i,k)
B λ

(i′,k′)
B | 〈ψ(i,k)

B |ψ(i′,k′)
B 〉|2 ≤

∑

i,i′

λ
(i,k)
B λ

(i′,k′)
B = 1. (1.12)
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Similarly, writing the eigenstate decompositions for the matrices ρ
(k)
A , we find that tr(ρ

(k)
A ρ

(k′)
A ) ≥ 0,

and therefore

tr(ρ2AB) ≤
∑

k,k′

pkpk′tr(ρ
(k′)
A ρ

(k′)
A ) = tr(ρ2A), (1.13)

which finally implies Eq. (1.9). Conversely, if S2(ρA) > S2(ρAB), then the state is entangled. Note
that this is not a necessary condition for bipartite entanglement: i.e., not all entangled states satisfy
S2(ρA) > S2(ρAB).

1.2.4 Entanglement entropies in many-body physics

In the condensed matter context, entanglement entropies are able to extract universal entanglement
properties of many-body quantum states. Let us present a few illustrative examples. Here, we will
consider that the state ρAB = |ψAB〉 〈ψAB| of the system AB is pure.

The scaling of entanglement of many-body ground states: Area law

Consider a D-dimensional many-body system S, e.g., spin 1/2 particles on a lattice geometry, and
in the groundstate |ψ〉 of a many-body Hamiltonian H (here S = AB). We now consider two
assumptions: the interactions between particles has a finite spatial range, and the system is not at
a quantum phase transition point. In this case, the entanglement entropy of the reduced density
matrix ρA of a hypercube A ⊂ S of size `D (see schematic Fig. 1.3 for D = 2) scales with the area
`D−1 of A [15]

Sα(ρA) ∝ `D−1. (1.14)

The area law has only been formally proven for certain exactly solvable models [15], such as with
non-interacting particles, or in integrable topological models: e.g., the Affleck, Lieb, Kennedy and
Tasaki model (AKLT) and the toric code. However, the area law can indeed be understood phe-
nomenologically, as a consequence of equilibrium, which implies the existence of a finite correlation
length `c.

Consider for concreteness a two-dimensional lattice model, c.f., Fig. 1.3a). Having the existence
of a finite correlation length means that a site i that belongs to A can only be entangled with
sites j that are separated by a distance |ri − rj | smaller than `c. Summing all contributions,
the subsystem A can only share entanglement with a number of B sites that live in a volume
V = `c`

D−1, c.f., Fig. 1.3a). When we trace out these B sites, we form a reduced density ρA with
entropy Sα(ρA) ∼ V = `c`

D−1, which is the area law.
The area law is a universal signature of equilibrium for many-body states, which can be verified

numerically, see an example obtained in Fig. 1.3b). The area law has also direct applications for
the numerical simulation of many-body systems. With tensor-networks in particular, the relatively
low entanglement level of area-law states makes the simulations of large-scale many-body quantum
systems feasible [19].

As we show now, sub-leading corrections to the area law can also have a universal behavior,
which are independent of the microscopic details of the system, and which can be thus extracted
numerically, or measured, in order to establish phase diagrams.

Universal corrections to the area law: central charge

The first type of universal contributions to the area law is related to a quantum phase transition in
one spatial dimension. As the correlation length diverges as one approaches the transition point, the
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a) b)

Figure 1.3: a) Schematic of the different lenghts involved in the scaling of entanglement in the
ground state of a many-body system. The entanglement entropy of ρA scales with the area of A.
b) Numerical demonstration of the area law scaling in the two-dimensional Heisenberg model via
quantum Monte-Carlo methods [27].

system can be described by a scale-invariant quantum field theory associated with the universality
class of the phase transition [28]. In particular, the divergence of the correlation length results in
an entanglement entropy which scales as

Sα(ρA) = fα(c) log(`), (1.15)

with fα is a known function of α, and c is the central charge associated with the universality class.
The central charge is now routinely extracted in numerical simulations to identify the universality
class of a quantum phase transition, see e.g., Ref. [29] and Fig. 1.4a).

Universal corrections to the area law: topological entanglement entropy

Topological phases of matter are quantum phases that lie beyond the Landau symmetry-breaking
paradigm, i.e., they cannot be identified from a local order parameter (magnetization, spin correla-
tions, etc). The entanglement entropy has emerged as one of the most relevant candidates to serve
as non-local order parameter [30, 31, 32, 33]. In systems with intrinsic topological order, there
indeed exists a peculiar negative universal contribution to the area law

Sα(ρA) = −γ + β`. (1.16)

The term γ is called the topological entanglement entropy [30, 31, 32], and results from ‘long-
range entanglement’, which is a certain type of entanglement that can be only generated from
a physical operation acting on the whole system, and which is conjectured to be the distinctive
feature of topological order [34]. The topological entanglement entropy is one numerical diagnosis
of reference for topological order in numerical simulations, see example in Fig. 1.4, and could also
be used in the future to probe topological order in quantum simulation experiments.
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Figure 1.4: a) Numerical observation of the logarithmic scaling of entanglement at a quantum
phase transition [29]. b) Numerical extraction via tensor-network algorithms of the topological
entanglement entropy γ in a non-integrable toric-code model [35].

Entanglement entropies out-of-equilibrium

The ability for entanglement entropies to reveal the distinctive features of a many-body system
is not restricted to the scenario of equilibrium. The dynamical process of thermalization, i.e., the
question of how a state enters the regime of equilibrium, can also be revealed by entanglement
entropies.

Consider for example an initial non-entangled state |ψ0〉, which is then time-evolved in one
spatial dimension with a unitary operation, |ψ(t)〉 = U(t) |ψ0〉. The main questions related to
thermalization are: how does a reduced system A equilibrate to a thermal state based on his
interaction with the rest of the system B? And how is this manifested in terms of the time
evolution of thermodynamical quantitites, such as entanglement entropies Sα(ρA)?

Some of the universal features of quantum thermalization have been understood based on quan-
tum field theory [36]. In the course of time-evolution, unitary dynamics can be described in terms
of elementary excitations (for instance, these are called magnons for spin-systems). These quasi-
particles propagate ballistically, entangling regions that are more and spatially separated. As a
consequence, the correlation length `c(t) ∝ t of the system grows linearly with time, and the en-
tanglement entropy Sα(ρA) ∼ `c(t) follows the same behavior. At late times, the entanglement
entropy reaches a ‘volume-law’ plateau S ∼ ` associated with thermal equilibrium, see Fig. 1.5a)
for an illustration.

Over the last decades, we have understood that the picture of thermalization described above
does not apply to all systems. In the presence of spatial inhomogeneities for example, quasi-particles
do not propagate ballistically due to destructive quantum interference effects. This leads to a drastic
slow-down of the thermalization dynamics known as ‘many-body localization’ [37]. Remarkably,
entanglement entropies have been shown to display in this case a universal logarithmic growth [38],
c.f., Fig. 1.5b).
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Figure 1.5: a) Linear entanglement growth in a unidimensional quantum system [16]. At a given
time (color), the von-Neumann entropy features a characteristic area-law plateau associated with
the existence of a finite correlation length `c(t). As time increases, the height of this plateau linearly
increases, as `c(t) ∼ vt. b) Logarithmic growth of entanglement entropy in a many-body localized
system [38].

1.3 How to measure entanglement entropies?

1.3.1 Measurement protocol with multiple copies

We have seen that entanglement entropies can detect and quantify entanglement of many-body
systems. How can we measure these quantities in an experiement? A first breakthrough in this
context was to realize that entanglement entropies can be measured by creating in an experiment
two identical copies ρA ⊗ ρA of a quantum system [39, 40]. By making an interference between
these copies, one can access the second Rényi entanglement entropies S2(ρA).

This protocol has been demonstrated experimentally in two remarkable experiments [41, 42],
see also Fig. 1.6. In these experiments, a degenerate atomic Bose gas was loaded into two adjacent
unidimensional optical lattices, forming two identical copies ρA ⊗ ρA of a unidimensional Bose
Hubbard system. The interference between these two copies was realized via atomic tunneling.

This protocol demonstrated remarkable capabilities of atomic quantum technologies for mea-
suring entanglement, but raised fundamental questions in terms of general applicability. First, the
two copies must be exactly prepared identically and subject to the exact same Hamiltonians, an
operation which becomes extremely challenging when dealing with large many-body systems. More
importantly, very few platforms have indeed the possibility to implement and interfere two copies
of their setups. In particular, the effort and investment that are already needed to implement a
single quantum simulator or computer are so significant that it became highly desirable to develop
new measurement protocols that do not require having such two copies.

1.3.2 Statistics instead of copies: Randomized measurements

Surprisingly and recently, we understood that we can also measure entanglement entropies with
‘single copies’. To introduce this approach, it is intructive to first recall how a ‘standard’ mea-
surement is performed, see Fig. 1.7. For measuring an observable O, one takes projective mea-
surements in the eigenbasis {s} of O, in order to provide an estimation of an expectation value
〈O〉 = Tr(ÔρA) =

∑
sO(s) 〈s| ρA |s〉, which is a linear function of the density matrix. For instance,
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Figure 1.6: Measurement of the second Rényi entropy in an ultracold atom system implementing
the Bose-Hubbard model [42].

for the demonstration of quantum advantage by Google AI, a set of bit-strings {si} were collected
to construct estimations of spin probabilities [9].

In order to access non-linear properties of the density matrix ρA, such as Rényi entropies, this
procedure is obviously not sufficient, and we need another ingredient. We have seen above that
the first approach to measure non-linear properties of ρA consists in duplicating physically the
system [39, 40, 41]. The second approach, randomized measurements, consists in replacing
these physical copies by successive realizations in an experiment of a single quantum system, and
applying different random operations u before the measurement.

The idea of randomized measurements has been first introduced by van Enk and Beenakker
in the quantum information context [44]. Randomized measurements give access to measurement
probabilities Pu,ρA(s) = 〈s|uρAu† |s〉 that are random numbers depending on the random unitary
matrix u, and of the state ρA. The key result from van Enk and Benakeer is that the statistics of the
random measurements Pu,ρA(s), obtained by sampling a certain number of random unitaries u over
the circular unitary ensemble (CUE), gives access to entanglement Rényi entropies. In particular,
for the second Rényi entropy S2(ρA) = − log[Tr(ρ2A)], the mapping between entanglement entropy
and statistical correlations takes the form of a remarkable simple expression

S2(ρA) = − log[(d+ 1)
∑

s

Pu,ρA(s)2 − 1],

with d the Hilbert space dimension, and the ensemble average of the unitaries over the CUE [44].

1.4 Outline of the manuscript

This manuscript presents our contributions to the field of randomized measurements.
In chapter 2, we present our first constributions, the main result being the first protocol to

measure entanglement entropies of qubit systems that only relies in local random unitaries [45], and
the corresponding first experimental demonstration of randomized measurements using a trapped
ion quantum simulator [43]. I also discuss the results presented in our works [46, 47].
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Figure 1.7: Comparison between standard and randomized measurements protocols. In a standard
protocol, a certain observable is accessed by projective measurement. Right panel: illustration
with the quantum advantage experiment by Google AI Quantum [9] based on measuring bit-string
probabilities, and performing cross-entropy benchmarking with classical simulations. In a random-
ized measurement prococol, a random unitary operation is applied prior to the measurement. This
gives access to a statistical distribution of measurements, which can be then used to access quanti-
ties that are not quantum observables, such as entanglement entropies. Right panel: experimental
demonstration of RM in a 10 qubit trapped ion quantum simulator [43].
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In chapter 3, I will show, using the graphical approach introduced in chapter 2, how to gen-
eralize our protocols to measure new quantities beyond entanglement entropies. This will cover
the protocol to characterize the ‘scrambling’ of quantum information [48], and the corresponding
experimental observation in a many-body system with local interactions [49]. I will then show
that randomized measurements provide protocols for measuring many-body topological invariants
of symmetry protected topological phases [50], and two-dimensional topological fractional Chern
insulators [51]. Finally, I will show that randomized measurements can also verify quantum com-
putation tasks by measuring state-fidelities between two quantum states prepared in two different
experiments [14].

In chapter 4, I will show that randomized measurements protocols can be reinterpreted in
the framework of ‘shadow tomography’ [52, 53]. This formalism allowed us to derive and de-
montrate protocols to detect and quantify entanglement via the positive-partial-transpose (PPT)
condition [14].
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Chapter 2

Randomized measurements via the
graphical approach

In this chapter, we present a general theory framework to describe randomized measurement proto-
cols. The main result derived from this framework is a randomized measurement protocol for qubit
systems using local random unitaries [45], which was experimentally demonstrated in Ref. [43].

2.1 Tensor description of a quantum state

We would like here to describe a quantum state of N ‘entities’ by a wavefunction

|ψ〉 =
∑

s1,...,sN

ψs1,...,sN |s1〉 ⊗ · · · ⊗ |sN 〉 , (2.1)

with indices si = 1, . . . , d, d being the internal dimension of the entities. The object ψs1,...,sN
is a N -leg tensor that can be represented and manipulated graphically, see below. The tensor is
represented as a box withN horizontal lines representing theN indices. Such a graphical description
is commonly used in particular in the tensor-network framework [19]. In our description, an entity
represented by an index i does not necessarily represent a single physical constituent. For example,
we can consider local decompositions of a system of L qubits, with N = L, and d = 2, each index
si = 0, 1 representing the state of one qubit. But, we can also describe the same system ‘globally’,
i.e., as a single entity N = 1 with internal dimension d = 2L, and ‘digital’ indices s = s1 = 1, . . . , 2L.
One can also include in this description an environment acting as decoherence, etc.

The distinction between local (N > 1) and global (N = 1) descriptions of a quantum state
will be essential for our discussion. While the van Enk and Beenakker approach [44] considers
the global description N = 1 to introduce randomized measurements, we have developed a local
framework, which allowed us to provide new measurement protocols that are well suited to current
experimental systems.
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Global versus local representation of a qubit system

|ψ〉 = ∑
s1 ψs1 |s1〉

Global approach (van Enk)

|ψ〉

|ψ〉 = ∑
s1,...,sL ψs1,...,sL |s1, . . . , sL〉

Local approach

|ψ〉

2.2 Graphical representation of quantum operations

Tensors representing quantum states can be easily transformed to describe physical processes.
First, a unitary operator U transforms quantum states into quantum states, and can be thus

described by a 2N leg tensor. A initial state |ψ〉 is then transformed into a new state according to

U |ψ〉 =
∑

s1,...,sN ,s
′
1,...,s

′
N

Us′1,...,s′N ,s1,...,sNψ(s1, . . . , sN ) |s′1〉 ⊗ · · · ⊗ |s′N 〉 (2.2)

Graphically these operations are obtained by linking the horizontal lines representing the indices
from the two different tensors.

Unitary operation

U |ψ〉 U |ψ〉 Operator-state operation

It is convenient to group indices that follow the same path into ‘packed’ indices, (s1, s2, . . . )→
sX , represented below as blue lines. For example, for defining a reduced density matrix ρA, we
group the indices associated with A, and the complement B, and we trace out B by contracting its
packed index sB:

Indices - Partial trace

|φ〉
A

B |φ〉

ρA |φ〉 〈φ|

Multi-index packing

Density matrix

The density matrix ρA summarizes all the properties of the subsystem A. First, the expectation
values of an observable O are obtained by the contraction of the density matrix with O. Some
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physical quantities are not expectation values: One such quantity that is relevant for us is the
purity Tr(ρ2A). In the following, we will omit the index A when there is no ambiguity.

Physical properties

〈O〉 ρ O

Tr(ρ2) ρ ρ

Expectation value

Purity

Measurement data is typically represented in the form of probabilities describing the state in a
‘computational’ basis {s}. This means that for a decomposition of the wavefunction with indices
s1, . . . , sN , the experiment provides us with an estimation of the probabilities P (s) = 〈s| ρ |s〉, with
|s〉 = |s1〉⊗· · ·⊗|sN 〉 (corresponding to measuring the observables O = |s〉 〈s|). For a qubit system,
P (s) corresponds to a bitstring distribution. For an ultracold atom experiment with atoms loaded
on L sites, P (s) represents the population distribution of the atoms w.r.t each site, as measured
by a quantum gas microscope (sometimes called ‘full-counting statistics’).

Measurement

P (s)
ρ

|s2〉 〈s2|

|s1〉 〈s1|

|sN 〉 〈sN |

P (s) ρ |s〉 〈s|

Fixed-Basis measurement

Fixed-Basis measurement
(indices packed)

Note that in the second line, we have written the same expression with packed indices, which
obviously makes our life easier and improves the readibility of our diagrams.

The probabilities P (s) are useful to measure expectation values of observables that are di-
agonal in the computational basis. For example, in a qubit system, one has access to spin cor-
relations 〈σzi σzj 〉 =

∑
s P (s)σzi (s)σ

z
j (s) from bitstring measurements. Similarly, one can extract

density-density correlations 〈ninj〉 from population measurements in ultra-cold atoms setups that
are equipped with a quantum gas microscope. For observables that are not diagonal in the com-
putational basis, one can perform a unitary transformation prior to measurement, and effectively
achieves a projective measurement in a different basis. For example with qubits systems, one can
measure correlations 〈σxi σxj 〉 in the x-basis via a Hadamard transformation occuring prior to the
measurement. In the same spirit, the idea of randomized measurements is to perform random
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operations before the measurements.

2.3 Introducting randomized measurements

How to measure quantities that are not associated with an observable, such as the purity? The
idea of randomized measurements is to apply random unitaries

u = u1 ⊗ · · · ⊗ uN (2.3)

before the measurement, i.e each entity i is subject to a local random operation ui. In particular,
for qubit systems, this corresponds to applying random rotations ui to each qubit independently,
and measure the probabilities Pu(s) = 〈s|uρu† |s〉 = tr(ρ u† |s〉 〈s|u).

Randomized measurement

Pu(s)
ρ

u†2 |s2〉 〈s2|u2

u†1 |s1〉 〈s1|u1

u†N |sN 〉 〈sN |uN

Pu(s) ρ u† |s〉 〈s|u

Randomized measurement

Randomized measurement
(indices packed)

Van Enk and Beenakker [44] introduced the concept of randomized measurements for a single
global constituent N = 1, and consider random unitaries from the circular unitary ensemble (CUE):
This means that the unitaries u1 are sampled according to the Haar measure on the unitary group
U(d) [54]. There exists numerical algorithms to generate random matrices from the CUE, e.g., using
the QR decomposition [55]. However, as the physical implementation of a random unitary from
the CUE requires exponential resources for quantum systems with local interactions [56], one can
also consider for randomized measurements a different random ensemble of unitaries, the unitary
2−design [57].

A unitary 2−design E(2) produces the same ensemble averages as the CUE at the level of second
order correlations, while its generation in an experiment would only require a polynomial number
of local operations [56]. Mathematically, this statement reads

∫

E(2)
[u⊗2]⊗ [(u†)⊗2]du =

∫

CUE
[u⊗2]⊗ [(u†)⊗2]du. (2.4)

Note that, by definition, the CUE is a unitary 2−design. For the general situation of arbitrary
number of entities N considered here, we assume that each unitary ui is sampled independently
from a unitary 2−design.

The magic of randomized measurements occurs when one starts correlating the results of two
randomized measurements and calculate ensemble averages. Here, we rely on the following prop-
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erties of unitary 2−designs [58]

(ui)si,s
(1)
i

(ui)∗
si,s

(2)
i

=
δ
s
(1)
i ,s

(2)
i

d

(ui)si,s
(1)
i

(ui)∗
si,s

(2)
i

(ui)si,s
(3)
i

(u∗i )si,s
(4)
i

=
δ
s
(1)
i ,s

(2)
i

δ
s
(3)
i ,s

(4)
i

+ δ
s
(1)
i ,s

(4)
i

δ
s
(3)
i ,s

(2)
i

d(d+ 1)
, (2.5)

where δ is the Kronecker function, and • is the ensemble average
∫
E(2) • dui. In order to under-

stand these equations, let us consider the large d � 1 limit. In this case, we can assume in first
approximation that each matrix element of ui is taken independently from a normal distribution
distribution of variance 1/d [44]. This allows us to understand the first line of Eq. (2.5), while the
second line follows from the same logic. Note however the factor d(d+1) (instead of d2 for a normal
distribution of variance 1/d), which results from the fact that, due to the unitary constraint, the
matrix elements of ui are not completely independent, in particular for small values of d.

It is convenient for what follows to use ket and bra notations, ui =
∑

si,s′i
us′i,si |s

′
i〉 〈si|, and to

combine Eqs. (2.5) to form a single equation

〈s(2)i |u
†
i |si〉 〈si|ui |s

(1)
i 〉 〈s

(4)
i |u

†
iOi(si)ui |s

(3)
i 〉 = δ

s
(1)
i ,s

(4)
i

δ
s
(2)
i ,s

(3)
i

, (2.6)

where Oi(si) = d(d + 1) |si〉 〈si| − dIi is a diagonal observable. This expression is better appreci-
ated graphically, and is the mathematical backbone of randomized measurements. Equation (2.6)
straightforwardly generalizes to several indices, subject to independent random unitaries ui, as
shown with the two last lines of the graphics below. Here O(s) = O1(s1) ⊗ · · · ⊗ ON (sN ), and
u = u1 ⊗ . . . uN . In the graphics, we will always assume that the ensemble average over random
unitaries is taken, without writing the overbar.

2−design property

u†i |si〉 〈si|ui u†iOi(si)ui

u†1 |s1〉 〈s1|u1 u†1O1(s1)u1

u†2 |s2〉 〈s2|u2 u†2O2(s2)u2

u†N |sN 〉 〈sN |uN u†NON (sN )uN

u† |s〉 〈s|u u†O(s)u

2-design

Multiple 2-design

Multiple 2-design
(indices packed)
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2.4 Second Rényi entropy from randomized measurements

We have introduced the mathematical tools to introduce our protocols. The general procedure to
obtain a protocol consists in rewriting the quantity to be measured in terms of statistical correlations
of randomized measurements (which can be measured). Graphically, this simply consists in cutting
two horizontal lines, in order to insert the graphical 2−design identities written above. The location
of this cut-glue surgery is shown below as a rectangle with dashed lines. For the purity, we obtain

Purity measurement

ρ ρ ρ u† |s〉 〈s|u u†O(s)u ρ

In a graphical way, we have proven our first result on randomized measurement [45, 47]

tr(ρ2) = Pu(s)tr(uρu†O(s)). (2.7)

Using

O(s) =
⊗

i

(d(d+ 1) |si〉 〈si| − dIi) = d2N
⊗

i


|si〉 〈si| −

1

d

∑

s′i 6=si

|s′i〉 〈s′i|




= d2N
⊗

i


∑

s′i

(−d)−D[si,s
′
i] |s′i〉 〈s′i|


 = d2N

∑

s′

(−d)−D[s,s′] |s′〉 〈s′| , (2.8)

where D[s, s′] =
∑

i(1− δsi,s′i) is a coefficient, which reduces to the familiar Hamming distance in
the qubit case d = 2, this result can be written as

tr(ρ2) = d2N
∑

s′

(−d)−D[s,s′]Pu(s)Pu(s′). (2.9)

We can finally average this equation over all basis s states, and obtain the final expression of the
purity

tr(ρ2) = dN
∑

s,s′

(−d)−D[s,s′]Pu(s)Pu(s′), (2.10)

and of the second Rényi entropy

S2(ρ) = − log


dN

∑

s,s′

(−d)−D[s,s′]Pu(s)Pu(s′)


 . (2.11)

Our expressions have been derived in full generality for a system of N entities in Refs [45] (in
a different form) and in Refs. [43, 47]. In the limiting case N = 1, we can rewrite Eq. (2.10) as

tr(ρ2) = d
∑

s

Pu(s)2 −
∑

s 6=s′
Pu(s)Pu(s′) = (d+ 1)

∑

s

Pu(s)2 − 1, (2.12)
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i.e., we recover the original result from van Enk and Beenakker [44], Eq.(1.17).
Our motivation to derive the multi-entity approach N > 1 [45, 43, 47] was to drastically simplify

the experimental task by replacing global unitaries by local ones for qubit systems. Indeed, consider
N qubits with d = 2, the protocol consists in applying random single qubit rotations ui on each
qubit independently, which is a task that can be realized in various experiments with very high
fidelity.

2.5 Experimental demonstration of randomized measurements

Randomized measurements were first demonstrated in a qubit system of L = 10 ions [43]. The
reduced purities of the many-body quantum state were obtained with randomized measurements
based on local random unitaries, which corresponds to the protocol described above with number
of entities N = L = 10, and local Hilbert space dimension d = 2.

2.5.1 System and Hamiltonian

In our trapped ion quantum simulator, a set of L Calcium ions was trapped via electrodes in a
Paul trap configuration [59]. Due to the Coulomb interactions, these ions typically align in a quasi
one-dimensional crystal geometry. As thermal phonon excitations are very efficiently suppressed
via laser-cooling, the system can be described in terms of a qubit system. The qubits are encoded
in two long-lived electronic states of each ion, with such two states separated by a dipole-forbidden
transition. An image of a 20-ion string is shown in Fig. 2.1

The trapped ion quantum technology is based on making the qubits interact via virtual phonon
excitations. To do so, a laser field is shined on the ions so that, due to an off-resonant light-matter
coupling, a change of electronic level in one qubit can result in the creation of a phonon excita-
tion [59]. This phonon propagates in the ion chain and can be finally absorbed by a second qubit.
In the so-called Lamb-Dicke regime, the phonon degree of freedom can be eliminated perturbatively,
and we can describe the coupling between the qubits by an effective Hamiltonian

HXY =
∑

i<j

Jij(σ
+
i σ
−
j + h.c.), (2.13)

with power law interactions Jij ∼ J/|i−j|α, 0 < α < 3. Effectively, the phonon modes thus generate
a coherent dipolar exchange interactions between the qubits. Note that the very same mechanism
can be used to generate two-qubit gates, such as the Cirac-Zoller gate or the Mølmer-Sørensen gate,
which are the basis of trapped ion quantum computers [59].

2.5.2 Generation of an entangled state

In addition to the coupling term HXY that can be switched on and off, the state of each qubit can
be manipulated locally to prepare any product state |ψ0〉. The same quantum ‘hardware’ can be
used to generate arbitrary local rotations u = u1 ⊗ · · · ⊗ uN for randomized measurements.

In the present case, the system was initialized in the Néel state |ψ0〉 = |0, 1, 0, 1, . . .〉, and then
was time-evolved via the Hamiltonian Eq. (2.13), in order to produce an entangled state

|ψ(t)〉 = exp(−iHXY t) |ψ0〉 . (2.14)

This situation represents the paradigmatic situation of thermalization [36]. Initially, the entan-
glement entropy of any subystem is approximately zero S2(ρA) ∼ 0. As time evolves, the entropy
of subsystems will increase progressively as the result of thermalization, while the entropy of the
total system will remain approximately zero during such a unitary process.
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Figure 2.1: Randomized measurement protocols implemented in a trapped ion quantum simula-
tor [43].

2.5.3 Randomized measurements

In order to measure entanglement after a certain evolution time, the coupling lasers are switched
off and the randomized measurements sequence starts. At this point, random 2× 2 unitaries from
the CUE generated numerically [55] are converted, via standard trigonometry, to a sequence of
qubits rotations Rzi , R

x
i along the z and x axes

ui = Rxi (−π/2)Rzi (θi,1)R
x
i (π/2)Rzi (θi,2). (2.15)

This decomposition offers the advantage of requiring only local addressing on the z axis, while the
ions can be rotated simultaneously along the x-axis via a global beam1.

After application of a given random unitary u, a bitstring s was collected by projective measure-
ment implemented by single site resolved fluorescence imaging [59]. This sequence was repeated
NM = 150 times to obtain an estimation of the randomized measurement probabilities Pu(s). This
procedure was repeated for Nu = 500 unitaries, corresponding to a total of 500× 150 repetitions of
the experiment. Based on this data, we could obtain estimates of the purity tr(ρ2A) for all possible
1024 subsystems ρA of the 10 ion system via Eq. (2.10).

2.5.4 Results

The results of this experiment are shown in Fig. 2.2. At time t = 0, the purity is close to unity for
all shown subsystems, showing that we indeed managed to prepare with high fidelity a pure product
state |ψ0〉. As entanglement is generated by time evolution, the purities of the subsystems decrease
with time, while the entanglement entropies increase. In contrast, the purity and entropy of the
total system stay at their initial values, showing that the system undergoes unitary dynamics. In
particular, for the late times, we can use the criterion Eq. (1.9) and detect entanglement for all
1024 bipartitions of the system, see panel (C).

These results constitute the first direct measurements of entanglement entropies in a single
quantum system. Moreover, this demonstration with 10 ions corresponds to a situation that is
beyond the regime of applicability of state-tomography. In conclusion, we could show in this
experiment the potential of randomized measurements to become a method of reference for probing
entanglement in many-body quantum systems.

1To optimize the randomness of the random unitaries, two unitaries of the form above were actually concatenated
in the experiment.
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Figure 2.2: Measurement of Rényi entanglement entropies [43]. Estimation of the purities (A) and
of the second Rényi entropies (B) for connected partitions of the type A = {1, . . . , i}. In panel (C),
we represent S(2)(ρA) for all 1024 bipartitions at t = 5 ms.

2.6 Measurement of entanglement entropies with global random
unitaries

In non-qubit systems, randomized measurements can also be realized using the global approach
N = 1 [44]. In the present section, we review our work [45, 46] showing how to physically realize
the required global random unitaries from a 2−design in quantum simulators.

Consider for concreteness a one-dimensional Fermi-Hubbard (FH) model of L sites (here h̄ = 1)

HFH = −J
L−1∑

i=1

∑

σ

c†i,σci+1,σ + Uint

L∑

i=1

ni,↑ni,↓. (2.16)

Here ci,σ annihilates a fermion of spin σ (σ =↑, ↓) at site i, and ni,σ = c†i,σci,σ is the local fermion
density. The Fermi-Hubbard model plays an important role in quantum simulation: It has been
introduced to model the behavior of strongly correlated electronic systems in the context of high-
temperature superconductivity, and can be realized with ultracold atoms loaded in optical lat-
tices [1].

In order to access the entanglement properties of the FH model via randomized measurements,
one has to realize global random unitaries acting on the entire partition ρA of interest2. How to
physically generate the required global random unitaries u from a 2−design? In Refs [45, 46], we

2The system being subject to particle and spin conservation, it is not possible to use ‘local’ random unitaries on
each lattice site independently.
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Figure 2.3: Generation of global random unitaries via random quenches [45] [(a)], and application to
the measurement of the second Rényi entropy of the groundstate of the two-dimensional Heisenberg
model [b)], and of a many-body localized phase in the Bose Hubbard model [c)].

propose to realize ‘random quenches’

u =

η∏

j=1

exp

(
−i
[
HFH|A +

∑

i∈A
ε
(j)
i,σni,σ

]
T

)
, (2.17)

where HFH|A is the Fermi-Hubbard model Eq. (2.16) restricted to A, T is a fixed evolution time,

and ε
(j)
i is a disorder term. The proposed physical implementation of the unitary is depicted in

Fig. 2.3 a). The partition of interest A is isolated using energy barriers, and a spin-dependent
disorder potential is applied. This disorder is changed η times to generate η random quenches, as
in Eq. (2.17). Note that unitaries of the type Eq. (2.17) have also been studied as candidates to
generate unitary 2−designs in Refs [56, 60, 61].

For us, the key question to be addressed was: To which extent a distribution of random quenches,
representing only an approximate 2−design, allow to measure purities and Rényi entropies via
randomized measurements? In order to answer this question, we chose a set of ‘test states’ ρA and
compare the purity tr(ρ2A) with the estimation obtained via the formula Eq. (2.10). We performed
this analyzis for the FH model, but also for the Bose-Hubbard model, and several spin models.

In Fig. 2.3a), we illustrate this procedure with the example of an area law that is satisfied by
the ground state of a two-dimensional Heisenberg model. At small η, time evolution generated by
the random quenches does not produce a sufficient amount of randomness for forming a 2−design.
Therefore the estimated Rényi entropy is a very bad approximation of the exact value (dashed
line). At larger η, convergence to a 2−design is achieved and we obtain a faithful estimation of
S2(ρA). The protocol can also be applied to study non-equilibrium dynamics, see Fig. 2.3b).

How does the time t = ηT needed to create an approximate 2−design increase with system
size L? For one-dimensional models, we have numerically observed that the required evolution
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t only increases linearly with system size L, and is minimized when the disorder strength, the
quench frequency T−1, and the characteristic frequencies of the Hamiltonian (e.g., J and Uint) are
all comparable. This is compatible with earlier results obtained for specific models [56, 60, 61], and
shows that global random unitaries can be generated efficiently in quantum simulators implementing
spin or Hubbard models, and used to faithfully measure purities and entanglement entropies.

2.7 Statistical errors and imperfections

Finally, we conclude this chapter by addressing the role of statistical and systematic errors. The
statements, which we make here in the context of the measurement of the purity, also apply to the
other quantities that we can measure with randomized measurements, see below.

2.7.1 Statistical errors

In an experiment, the purity of a quantum state ρ is estimated via Eq. (2.10) with an ensemble
average over a finite number of unitaries Nu, and with probabilities Pu(s) estimated from a finite
number of measurements NM (per unitary). To understand the role of statistical errors originated
from the finite values of Nu and NM , let us first present the details of the postprocessing of
experimental data. We will then give simple estimates for the scaling of statistical errors, which
we can also compare with numerical simulations.

Post-processing the experimental data

In order to obtain an estimation of the purity from ‘raw’ experimental data, one proceeds as
follows. For each random unitary ur (r = 1, . . . , Nu), one acquires NM projective measurements
in a fixed basis {s}, which we label sr,m (m = 1, . . . , NM ) (recall for example that sr,m correspond
to bitstrings for a qubit system). Each measurement sr,m is a discrete random variable that is
sampled according to a Bernoulli distribution with discrete probabilities Pur(s). Therefore, we can
build estimations of such probabilities by empirical averages

P (e)
ur (s) =

NM∑

m=1

δs,sr,m
NM

, (2.18)

Multiplying naively the estimates of the probability to obtain the purity via Eq. (2.10) would
provide a biased estimation, i.e, a quantity whose average, in the sense over many repetitions
of the protocol, would not be the exact purity. Instead, based on U -statistics [62], we can con-
struct unbiased estimators for polynomials of the vector Pur(s) simply by using different projective
measurements [45, 46]

[Pur(s)Pur(s′)](e) =
∑

m6=m′

δs,sr,mδs′,sr,m′

NM (NM − 1)
, (2.19)

We can now use Eq. (2.10) and obtain our estimation of the purity

[tr(ρ2)](e) =
dN

Nu

∑

r

∑

s,s′

(−d)−D[s,s′][Pur(s)Pur(s′)](e)

=
dN

NuNM (NM − 1)

∑

r

∑

m 6=m′

(−d)−D[sr,m,sr,m]. (2.20)
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Eq. (2.20) illustrates that the estimation of the purity is provided by a bilinear operation on the mea-
surement data sr,m. Note that the data postprocessing task of randomized mesurements is therefore
a simple task, which does not require large memory storage and can be also massively parallelized.
Having in mind the classical optimization procedures needed for tomographic methods [3, 7], this
represents a strong added value for randomized measurements. We provide in Ref. [63] an open-
source repository, with a python code that can postprocess randomized measurements based on
Eq. (2.20).

Scaling of statistical errors

Our estimation [tr(ρ2)](e) is unbiased, i.e we measure in average the true value of the purity.
However, the statistical error

E = avg[|tr(ρ2)](e) − tr(ρ2)|], (2.21)

where avg represents an averaging over many repetitions of the protocol, takes a finite positive
value. An important question to assess the feasibility of our protocol is therefore: What is the
required value of NM and Nu to ensure that the statistical error E is compatible with a given
accuracy?

A simple estimation for statistical errors can be derived as follows for the case N = 1 [46]. The
purity estimation has the form of an empiral average over random unitaries

tr(ρ2) =
1

Nud

∑

r,s

A(r, s) (2.22)

with A(r, s) = d2P 2
ur(s) (assuming the large d limit, d + 1 ≈ d). The average statistical error for

A(r, s) can be analytically estimated by calculating, using the statistics on Bernoulli distributions,
the variance of [Pur(s)2](e), as given in Eq. (2.19). In the most relevant regime for randomized
meaurements, NM � d, we find E [A(r, s)] ∼ d/NM [64]. Assuming in first approximation that all
terms A(r, s) are independent, we obtain

E ∼ 1√
Nud
E [A(r, s)] =

1√
Nu

( √
d

NM

)
. (2.23)

In other words, in order to obtain an error of the order of 1/
√
Nu, we require a number of projective

measurements NM ∼
√
d. It is surprising that the required number of measurements to estimate

the purity is smaller than the Hilbert space dimension d, meaning that only few states are actually
observed during the protocol. This is due to a well known statistical effect, the ‘Birthday paradox’.
The probability to observe twice the same state with NM samples, which is the key ‘statistical
event’ that controls the accuracy of purity estimation, c.f Eq. (2.20), indeed scales as the square
root of the number of the possibilities d.

For N = 1, our estimate shows that the total number of measurements NuNM to obtain a given
accuracy scales as the Hilbert space dimension

√
d. For the protocol with qubits and local unitaries,

we numerically observed that the error is more of the order of daN , a ≈ 1 [43] (here the Hilbert space
dimension becomes dN ). For both protocols, we thus note a remarquable advantage in terms of
required measurements over state tomography, which requires approximately 4N measurements [3].
In their current versions, randomized measurement protocols are expected to be applicable to
partition sizes up to 20 qubits. For illustration, we show in Fig. 2.4 the scaling of the required
value of NUNM to measure the purity with relative error 0.12 for a qubit system of NA sites and
various quantum states.
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Figure 2.4: a) Scaling of the total number of measurements NuNM to obtain a given accuracy, and
b) optimal ratio minimizing the statistical error for a given value of NuNM [43].

Finally, for a fixed measurement ‘budget’ NuNM , the question of how one should choose the
value of Nu and NM to minimize statistical errors is also of practical interest. As shown in Fig. 2.4
b), the optimal ratio Nu/NM depends on the quantum state (a priori unknown) being probed.
We discuss at the end of this manuscript strategies for reducing statistical errors via importance
sampling of random unitaries.

2.7.2 Imperfections

We now discuss the role of systematic errors in randomized measurements protocols.

Miscalibration

For concreteness, let us address the problem of miscalibration for our protocol with local random
unitaries in a qubit system. In this case, the random unitaries ui are qubit rotations, which can be
parametrized as in Eq. (2.15). Due to an imperfect calibration of the experiment, the unitaries ũi
that are physically realized can differ from the unitaries ui that we expected to generate (this is
sometimes called a ‘unitary error’).

Randomized measurements have robustness properties against miscalibration. Suppose for sim-
plicity that we can write ũi = uivi, where ui is picked from the CUE, and vi is an unwanted fixed
rotation. In this case, the purity estimation will not be affected, because, according to the Haar
measure, if ui is sampled from the CUE, uivi = ũi is also sampled from the CUE [54]. In brief, a
random unitary multiplied by another unitary is still a random unitary that can be used for our
protocols.

Decoherence

In contrast to miscalibration, decoherence can affect the estimation of the purity. Decoherence can
be due for example to spontaneous emission, or to errors in measurement readout [59].

Here, for concreteness we consider that the state is depolarized due to decoherence

ρu = (1− p)uρu† +
p

d
1, (2.24)
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where 1 is the d× d identity matrix, and 0 < p < 1 is the strength of the noise. The depolarization
noise term commutes with any unitary operation, i.e., we can write ρu as

ρu = uρpu
†, (2.25)

with ρp = (1−p)ρ+ (p/d)1. This means that we can imagine that decoherence had indeed occured
before randomized measurements were performed. Randomized measurements being performed in
this picture on ρP , we obtain an estimate

tr(ρ2p) = (1− p)2tr(ρ2) +
p(2− p)

d
. (2.26)

Decoherence thus leads to an underestimation of the purity. We have studied this effect for various
decoherence models in Refs. [46]. In the context of the experimental demonstration of randomized
measurements [43], the loss of purity for each qubit was of the order of 1%.
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Chapter 3

The randomized measurement toolbox

We have introduced in the previous chapter the general ideas behind randomized measurements in
the context of the purity measurement. In the present chapter, we review the works [48, 49, 50, 65],
where we derived and experimentally demonstrated protocols to measure other quantities associated
with many-body entanglement.

In order to derive the formulas that map the quantities to be measured to statistical correlations
of randomized measurements, we will take advantage of the graphical approach that was developed
in the previous chapter.

3.1 Measuring out-of-time-order correlations

Out-of-time-order correlations (OTOCs) have been recently studied in the context of quantum
chaos in high-energy physics [66, 67]. The idea is to consider a Hermitian operator W that is
evolved via a unitary operation U(t) according to the Heisenberg picture W (t) = U(t)†WU(t).
The OTOC is defined as

Õ(t) =
tr(ρ0W (t)VW (t)V )

tr(ρ0W 2(t)V 2)
, (3.1)

where ρ0 is a density matrix, and V is an operator, which is here assumed Hermitian and unitary,
and which commutes with the initial value of the W operator, i.e., [W (0), V ] = 0. The OTOC
can be simply related to the norm of the commutator between the operators W (t) and V [67]. In
particular, the OTOC is initially unity, Õ(t = 0) = 1, and will then generically decay as a function
of time, as the two operators W (t) and V start overlapping.

The decay of the OTOC as a function of time has been recognized as a signature of quantum
chaos. In certain models of high-energy physics that are relevant to describe quantum dynamics
at the horizon of a black-hole, such as the Sachdev-Ye-Kitaev (SYK) model [68, 69], the decay of
OTOCs is in particular exponential, which is conjectured to be a signature of ‘fast scrambling’ [70].
This means that information that is initially encoded locally (which could be ‘revealed’ by a local
measurement W (0)) becomes after time evolution quickly delocalized (or ’scrambled’) and therefore
no longer accessible to local measurements [67]. Inspired by these theoretical developments, the
study of OTOCs has been recently extended to condensed matter, revealing universal aspects of
thermalization dynamics [71, 72, 73, 74, 75, 76]. There is thus a growing interest in measuring
OTOCs in quantum simulators and quantum computers.

Unfortunately, for an experimentalist, measuring OTOCs is not as easy as measuring a standard
correlation function, the reason being the ‘out-of-time’ ordering that is apparent in Eq. (3.1). The
first experimental measurements of OTOCs could only be realized recently in a spin system with
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infinite range interactions [77], or with a ‘small’ 4-qubit quantum computer [78]. In these experi-
ments, OTOCs could be measured by reversing the sign of the Hamiltonian H → −H during time
evolution, in order to reproduce the time-ordering sequence of Eq. (3.1), and following the protocols
developed in Refs. [79, 80, 81]. For generic experimental platforms, implementing kinetic energy
terms, local interactions, etc, changing dynamically the sign of the Hamiltonian is an outstanding
challenge. This motivates new approaches to measure OTOCs.

Randomized meausurements protocols allow us to measure OTOCs without reversing the sign
of the Hamiltonian during time evolution, and are thus applicable to generic physical setups. In
the following, we present our theory protocol [48], as well as the experimental demonstration with
a 10-qubit trapped ion quantum simulator [49].

3.1.1 Randomized measurement protocol

In the case of the purity measurement, statistical correlations were used to decompose a non-linear
function into a product of observables (the randomized measurements). Here, we use the same trick
to decompose an out-of-time order correlation function into a product of two correlation functions,
which can be both measured separately. Graphically, this reads

OTOC measurement

VW (t)V W (t) VW (t)V u† |s〉 〈s|u u†O(s)u W (t)

,

with the same notations as in chapter 2. Replacing O(s) by its definition, we obtain

Tr(VW (t)VW (t)) =
∑

s′

(−d)D[s,s′]〈VW (t)V 〉u,s〈W (t)〉u,s′ (3.2)

with 〈W (t)〉u,s′ = 〈s′|uW (t)u† |s′〉, and 〈VW (t)V 〉u,s = 〈s|V uW (t)V u† |s〉, which are standard,
easily measurable, time-ordered correlation functions. This equality in turn implies that we can
measure the infinite temperature OTOC, ρ0 = 1/dN as

Õ(t) =

∑
s′(−d)−D[s,s′]〈VW (t)V 〉u,s〈W (t)〉u,s′∑
s′(−d)−D[s,s′]〈W (t)〉u,s〈W (t)〉u,s′

. (3.3)

The protocol for measuring OTOCs via randomized measurements based on Eq. (3.3) is illus-
trated for a L-qubit system in Fig. 3.1 for both global random unitaries (N = 1, d = 2L) and local
random unitaries (N = L, d = 2). There are two types of experiments to be performed. (i) First,
one applies a random unitary u† (or equivalently u, as in the figure) on an initial state |s′〉, which
is then time-evolved with the Hamiltonian. After that, the operator W is measured, providing us
with an expectation of 〈W (t)〉u,s. (ii) The second type of experiment is identical to the first one,
except that V is applied before time evolution, and we obtain 〈VW (t)V 〉u,s. According to Eq. (3.3),
the OTOC Õ(t) is extracted from the statistical correlations between the two measurements.

3.1.2 Sampling of initial states

Equation (3.3) suggests that one must use all basis states |s′〉 as initial states to access the infinite
temperature OTOC, a daunting task for a many-body system with an exponentially large Hilbert
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Figure 3.1: Randomized measurement protocol for OTOCs [48]. Either with global [(a)] and local
[(b)] random unitaries, a random initial state is created and time-evolved with the operator U .
Statistical correlations between randomized measurements of the operator W reveal the OTOC.

space. Fortunately, we can simplify our protocol, and use in fact a very restricted number of initial
states.

First, for global unitaries, N = 1, only one initial state |s〉 is sufficient to measure Õ(t), as we
can write

∑

s′

(−d)−D[s,s′]〈VW (t)V 〉u,s〈W (t)〉u,s′ = 〈VW (t)V 〉u,s


〈W (t)〉u,s −

1

d

∑

s′ 6=s
〈W (t)〉u,s′




=

(
1 +

1

d

)
〈VW (t)V 〉u,s〈W (t)〉u,s, (3.4)

where we have assumed that tr(W (t)) = tr(W ) = 0 (without loss of generality, as one can always
redefine the Hermitian operator W →W − tr(W )).

In the general case N ≥ 1, such a drastic simplication is not possible. However, we can use a
restricted number of initial states and obtain faithful estimations for the OTOCs. For the qubit
case (d = 2), we have introduced the modified OTOCs

Õn(t) =

∑
s′∈En

(−2)−D[s,s′]〈VW (t)V 〉u,s〈W (t)〉u,s′∑
s′∈En

(−2)−D[s,s′]〈W (t)〉u,s〈W (t)〉u,s′
, (3.5)

where the ensemble En (n = 0, . . . , N) denotes the set of 2n basis states {s′} = {s′1, . . . , s′L}, such
that only the first n qubits differ from our reference state |s〉, i.e., s′i = si, for i > n.

Obviously, the series of modified OTOCs converges to the OTOCs at n = N , i.e., ÕN (t) =
Õ(t). The good news is that the low order terms n = 0, 1, . . . , generically already give good
approximations of the OTOC [48], see for instance Fig. 3.1 for an example with the Kicked Ising
model. Having a fast converging series of modified OTOCs implies, that in an experiment, one can
access OTOCs based on preparing only a small number of initial states. For example, for measuring
Õ2, we only need 22 = 4 initial states.
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3.1.3 Experimental observations

Our protocol was first experimentally demonstrated with a 4 qubit quantum computer based on
nuclear magnetic resonance (NMR) [82]. The authors used global random unitaries, confirming ear-
lier experimental results obtained with changing the sign of the Hamiltonian [78]. In our work [49],
we took advantage of our protocol to study the ‘scrambling’ of quantum information in a large
many-body system with local interactions, i.e., in a situation where OTOCs could not be measured
so far. In our case, we used local random unitaries.

As for the Rényi entropy measurement [43], the system under study was a 10-qubit trapped
ion quantum simulator, subject to the long-range XY -model Eq. (2.13). Based on numerical
simulations, we checked that the second modified OTOC O2(t) is a good approximation of the
exact OTOC O(t), meaning that only four initial states |s′〉 were needed, see Fig. 3.2.

Randomized measurements were performed by preparing initial random product states and
letting the system evolve until a time t, when a measurement of the operators W = σxj , j =
1, . . . , N was performed. The operator V was fixed to V = σz1 . We show in Fig. 3.2 the results
of the measurements for two values of the interaction power-law exponent α. For α = 1.22,
the measurements are compatible with the existence of a ‘butterfly velocity’ vB [75, 76], as the
characteristic time of decay tc ∝ j/vB of the OTOC approximately increases linearly with the
position j of the W operator. Instead, for longer range interactions, α = 0.85, we noticed that the
space-time profile of the OTOCs cannot be linked to the existence of a butterfly velocity.

Our protocol has enabled the observation of quantum information scrambling in a many-body
system, and put into evidence the crucial role of long-range interactions. This may open up interest-
ing possibilities to probe scrambling in situations that are relevant to the scenario of fast-scrambling,
e.g by measuring OTOCs in the Sachdev-Ye-Kitaev (SYK) model [68, 69].

3.2 Cross-platform verification of quantum devices

Rényi entropies or OTOCs are useful to probe the many body properties of a quantum system.
But how to verify that the quantum state that is prepared in an experiment is really the state that
we expected to prepare? Our work [65] extends the use of randomized measurements to measure
state fidelities.

Our strategy to verify the quality of preparation of a quantum state consists in measuring
the fidelity between two different density matrices ρ1, and ρ2. We can first consider the situation
of theory-experiment verification, where the first quantum state ρ1 is physically realized in an
experiment, e.g. a trapped ion quantum simulator, and the second state ρ2 is a theory representation
of the state on a classical computer, i.e., obtained by a numerical simulation. In the regime of
quantum advantage, such theory-experiment verification cannot be realized, as it is not possible to
represent the state ρ2 on a classical computer. However, we can perform experiment-experiment
(or ’cross-platform’) verification, comparing two states ρ1 and ρ2 that are realized in two different
experiments. These two experiments are designed to ideally create the same state ρ so that, when
the two states significantly differ, we can conclude that at least one quantum device suffers from
errors. If instead the two devices are shown to produce the same quantum state, ρ1 ≈ ρ2, one can
gain confidence in the fact that both devices operate as expected.
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Figure 3.2: OTOC measurements in a trapped ion system [49]. The modified OTOCs O0,1,2(t) were
measured using randomized measurements obtained from four different initial states. The dots
correspond to the experimental measurements, while solid lines represent numerical simulations.
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Figure 3.3: Randomized measurements of Measurement of fidelities between a experimental and a
theory state [65], based on the randomized measurement data produced for Ref. [43].

3.2.1 Introducing quantum state fidelities

There exists various fidelity meaures to quantify the overlap between two quantum states. Here,
we will be interested in the ‘max’ fidelity [83]

Fmax(ρ1, ρ2) =
tr(ρ1ρ2)

max
[
tr(ρ21), tr(ρ

2
2)
] . (3.6)

This quantity is a fidelity in the sense that it satisfies certain mathematical properties known as
Josza axioms [84]. In particular Fmax is unity for ρ1 = ρ2, and is zero for two orthogonal pure
states.

3.2.2 Measuring quantum state fidelities

For qubit systems, protocols for measuring theory-experiment fidelities have been recently devel-
oped [85, 13, 5, 6]. The idea is that one can represent the theory state ρ2 as a sum of Pauli
strings ρ2 =

∑
n cnσn. The task then consists in mesuring in the experimental platforms the

terms tr(ρ1σn) for the most representative Pauli strings σn based on importance sampling. In our
work [65], we adopt a different strategy that allows us to propose the first protocol to measure
experiment-experiment fidelities.

The idea behind our protocol is depicted in Fig. 3.3. Each quantum system ρ1, ρ2 is subject

to randomized measurements P
(i)
u (s) = 〈s|uρiu† |s〉, i = 1, 2, implemented with the same random

unitaries u. From this data, we can access the overlap

tr(ρ1ρ2) = dN
∑

s,s′

(−d)−D[s,s′]P
(1)
u (s)P

(2)
u (s′), (3.7)

the graphical proof being identical to the one of the purity formula Eq. (2.10):
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Fidelity measurement

ρ1 ρ2 ρ1 u† |s〉 〈s|u u†O(s)u ρ2

We provide in Ref. [63] a Python code to reconstruct state fidelities for qubit systems. From
the overlap, and the purity measurements tr(ρ21) and tr(ρ22), obtained using the same experimental
data and Eq. (2.10), we obtain the fidelity Fmax.

3.2.3 Measuring Loschmidt echos

This protocol can be also useful to compare two states ρ(t), and ρ(t′) that are prepared in the
same experiment, with different evolution times t, t′. The overlap tr(ρ(t)ρ(t′)) is the ‘Loschmidt
echo’, which is an important quantity to describe dynamical quantum phase transitions [86]. In
this protocol, randomized measurements are performed on the two quantum states using the same
unitaries, and the Loschmidt echo is extracted from the statistical correlations between randomized
measurements (here, ρ1 → ρ(t), ρ2 → ρ(t′)).

3.2.4 Experimental demonstration

Our protocol could be experimentally demonstrated for the case of theory-experiment fidelities [65].
The experimental state corresponds to the state studied in the case of the Rényi entropies measure-
ments [43]. The data published in this earlier paper provides us with the randomized measurements

P
(1)
u (s). The second state ρ2 is obtained from a numerical simulation of the system, including the

various sources of decoherence that were measured independently. From this density matrix, we

can numerically sample randomized measurements P
(2)
u (s).

The measured fidelity is shown in Fig. 3.3, as a function of the size NA of the subsystem. We
observed that the theory state is indeed a faithful representation of the experimental state (∼ 0.6
fidelity in the worst case).

One may however wonder why the fidelity is not exactly unity, since we included in the nu-
merical simulations the effect of decoherence. The mismatch is actually due to two effects. First,
miscalibration of the random unitaries affect here the measurement by artificially reducing the
statistical correlations between measurements. Second, decoherence occuring during the measure-
ment process, as described in chapter 1, is also present. These two effects, which were analyzed in
details in our work, are not fundamental, as they can be significantly reduced by improving the
single-site control of the experiment (in constant progress in various platforms, such as Rydbergs
atoms, trapped ions, superconducting qubits,. . . .).

3.3 Many-body topological invariants with randomized measure-
ments

In our work [50], we showed that randomized measurements provide us with a protocol to measure
many-body topological invariants of symmetry-protected-topological phases. We also extended this
result to the case of two-dimensional topological phases [51].
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Figure 3.4: (a) Schematic of the extended SSH model. (b) SPT many-body topological invariants
Z̃R describing the action of reflection symmetry. (c) The MBTI Z̃R taking three different quantized
values −1, 0, 1 can be used to obtain the phase diagram of the SSH model [50].

3.3.1 Introducing symmetry-protected-topological phases and many-body topo-
logical invariants

Let us consider for concreteness the extended Su-Schrieffer-Heeger (SSH) model [87, 88, 89]

HeSSH =
J

2

L/2∑

i=1

(
σx2i−1σ

x
2i + σy2i−1σ

y
2i + δσz2i−1σ

z
2i

)
+
J ′

2

L/2−1∑

i=1

(
σx2iσ

x
2i+1 + σy2iσ

y
2i+1 + δσz2iσ

z
2i+1

)
.

(3.8)

This model with δ = 0 was recently implemented with Rydberg atoms [90], and and can also emerge
in ultracold atom systems [91, 92].

This model hosts a topological phase, known as the Haldane phase [93] (see Ref. [90] for the
mapping to the original spin one formulation), which can be considered as the simplest example of
topological phase in a many-body system. Here, topology means that the system in its groundstate
cannot be identified from a ‘local order parameter’, which is a physical quantity associated with
a local observable. This differs from the usual scenario of spontaneous symmetry breaking that
describes the formation of non-topological phases [94]. The Haldane phase is a symmetry-protected
topological phase (SPT), whose origin is due to the presence of global symmetries that are encoded
in the wavefunction. In the SSH model, we have three symmetries that ‘protect’ the Haldane phase:
(i) spatial reflection symmetry with respect to the center site, (ii) time-reversal symmetry, and (iii)
internal symmetries, which are spin rotations of an angle π along the axes x, y and z axes.

Bosonic one-dimensional SPT phases, such as the Haldane phase, can be formally classified
based on the theory of group cohomology, which can describe the formal representation of sym-
metries in a many-body wavefunction [95, 96]. Recently, remarkable theory works have shown
that one can extract such symmetry representations based on many-body topological invariants
(MBTIs) [97, 98]. The MBTIs are functions of the reduced density matrix ρ of size L in a lattice
system, and take a quantized value 0,±1 in the thermodynamics limit L� `c (`c is the correlation
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length of the system). This raised an obvious interest for developing protocols that could measure
these MBTIs, with the prospect to be able to classify SPT phases in an experiment.

3.3.2 Randomized measurement protocols

MBTI are highly non-local and non-linear functionals of the density matrix. In our work [50], we
relate MBTI to statistical correlations of randomized measurements. The key difference compared
to our previous protocols is that we use distributions of random unitaries that can incorporate the
symmetries of the system.

Partial-reflection invariant

The partial reflection invariant was introduced to extract the symmetry representation of a wave-
function with respect to spatial reflection symmetry [98]. We consider a subsystem of 2L sites, and
the reflection operator R that transforms the basis states |s〉 = |s1, . . . , s2L〉 into their mirrored
images R|s〉 = |s2L, . . . , s1〉. Pollmann and Turner have shown that the quantity ZR = tr(ρR)
can be used to define a MBTI [98]. Indeed, if one denotes as I1 the first {1, . . . , L} sites, and by
I2 = {2L, . . . , L+ 1} the rest of the subsystem, the quantity

Z̃R =
ZR√
tr(ρ2I1)

(3.9)

is quantized in the thermodynamic limit L → ∞, and extract the symmetry representation of
partial-reflection symmetry [98]. The structure of ZR is illustrated in Fig. 3.4b), while the phase
diagram showing the quantized values of the MBTI Z̃R in the extended SSH-model is represented
in Fig. 3.4c).

The structure of MBTIs can be understood graphically. Here, the quantity ZR can be seen as
a highly non-local quantity that results from the contraction of the indices sI1 of the subsystem I1
with the ones sI2 of I2, c.f., below.

After a few steps of randomized measurements surgery, shown in this graphics, we can rewrite
ZR in terms of statistical correlations of randomized measurements.
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Partial reflection measurement

ρ ρ

ρ
u†I1 |sI1〉 〈sI1 |uI1 u†I1OI1(sI1)uI1

ρ
u†I1 |sI1〉 〈sI1 |uI1
u†I1OI1(sI1)uI1

Inserting, as in the previous section, the value of the operator O(sI1), and averaging over all 2L

basis states sI1 , we obtain

ZR = 2L
∑

s

(−2)−D[sI1 ,sI2 ]Pu(s), (3.10)

with the random unitary u = uI1 ⊗ uI1 , uI1 = u1 ⊗ · · · ⊗ uL, and ui=1,...,L is sampled indepen-
dently from a local 2−design, is a reflection symmetric random unitary. This results provides a
measurement protocol for ZR and therefore for Z̃R. At a conceptual level, Eq. (3.10) shows that
we can interpret the MBTI as the quantized response of a system to a reflection-symmetric random
perturbation.

Time-reversal invariant

The MBTI associated with time-reversal symmetry was introduced in Refs. [98, 99, 100]. In order
to define the MBTI, the subsystem ρ is again divided into two parts I1 and I2, whose states are
here indexed as sI1 = s1, . . . , sL, and sI2 = sL+1, . . . , s2L. The MBTI associated with time-reversal
symmetry can be written as

Z̃T =
ZT[

tr(ρ2I1)
]3/2

ZT = tr(u†T ρuT ρ
TI1 ), (3.11)

with uT the unitary matrix representing the ‘unitary part’ of the time-reversal operation, and ρTI1

the partially transposed density matrix, which is defined via

〈sI1 , sI2 | ρTI1 |s′I1 , s′I2〉 = 〈s′I1 , sI2 | ρ |sI1 , s′I2〉 . (3.12)

Once again, the stucture of the MBTI can be better understood graphically, and then manipulated
to be re-expressed in terms of randomized measurements.
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Time reversal measurement

ρ ρ
u†T uT

ρ ρ
u†T uT u†I1 |sI1〉 〈sI1 |uI1

u†I2 |sI2〉 〈sI2 |uI2
u†I1OI1(sI1)uI1

u†I2OI2(sI2)uI2

ρ ρ
uT u

†
I1
|sI1〉 〈sI1 |uI1u†T (u∗I1)†OI1(sI1)u∗I1

u†I2 |sI2〉 〈sI2 |uI2 u†I2OI2(sI2)uI2

To write the second equality, we have used the property

(v†ov)T = vT oT (v†)T = (v∗)†ov∗, (3.13)

with the unitary v = uI1 and the diagonal operator o = OI1(sI1). Averaging over all 22L states
s = (sI1 , sI2), we obtain

ZT = 22L
∑

s,s′

(−2)−D[s,s′]P
(1)
u (s)P

(2)
u (s′), (3.14)

with P
(1)
u (s) = 〈s|u(1)ρ(u(1))† |s〉, u(1) = (uI1u

†
T ) ⊗ uI2 , and P

(2)
u (s) = 〈s|u(2)ρ(u(2))† |s〉, u(2) =

(uI1)∗ ⊗ uI2 . Here, uI1 = u1 ⊗ · · · ⊗ uL, and uI2 = uL+1 ⊗ · · · ⊗ u2L are two independent random
unitaries.

Internal symmetries invariant

The D2 invariant measuring internal spin symmetries was the first MBTI introduced for SPT
phases [97, 98]. Here, we consider a subsystem that is made of three consecutive regions I1, I2 and
I3, each of them having L sites. The MBTI Z̃D2 is defined as

Z̃D2 =
ZD2

tr(ρ2I1)2

ZD2 = tr
(
SI1(PI2 ⊗ PI2)SI3(VI1ρV

†
I1
⊗ ρ)

)
. (3.15)

Here, SIi is the swap operator SIi |sIi〉 ⊗ |s′Ii〉 = |s′Ii〉 ⊗ |sIi〉, PI2 is a diagonal operator in the
computational basis, namely PI2 =

∑
PI2(sI2) |sI2〉 〈sI2 | =

∏
i∈I2 σ

z
i , and VI1 =

∏
i∈I1 σ

x
i . Once

again, the structure of the MBTI is better understandable graphically, which allows us at the same
time to derive a randomized measurement protocol:

D2 Measurement

ρPI2

VI1 V †
I1

ρPI2 ρ PI2

VI1 V †
I1

ρPI2

u†I1 |sI1〉 〈sI1 |uI1

u†I3 |sI3〉 〈sI3 |uI3

u†I1OI1(sI1)uI1

u†I3OI3(sI3)uI3
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The final result of this derivation (averaging over all 22L states sI1 and sI3) is

ZD2 = 22L
∑

s,s′

(−2)
−D[sI1∪I3

,s′I1∪I3
]
PI2(sI2)PI2(s′I2)P

(1)
u (s)P

(2)
u (s′), (3.16)

with the two randomized measurements P
(1)
u (s) = 〈s|u(1)ρ(u(1))† |s〉, u(1) = uI1VI1 ⊗ 1I2 ⊗ uI3 , and

P
(2)
u (s) = 〈s|u(1)ρ(u(1))† |s〉, u(2) = uI1 ⊗ 1I2 ⊗ uI3 .

3.4 Randomized measurement of the many-body Chern number

Building on the remarkable theory and experimental efforts on probing integer quantum Hall states
(see e.g. the review [101]), we have recently extended our approach for measuring topological
invariants of fractional quantum Hall states [51]. The many-body Chern number (MBCN), which
is the many-body topological invariant relevant for lattice versions of fractional quantum Hall states,
can be written in a form that is suitable for randomized measurements. In contrast to previous
approaches based on linear response perturbations [102, 103, 104, 105], our protocol extracts the
MBCN from measurements on the wavefunction, without relying on auxiliary systems.

Consider for concreteness the groundstate |ψ〉 of a hard-core boson model implemented on the
square lattice geometry shown in Fig. 3.5. We define a subsystem made of two parts R1, and R2, of
size `1 × `y, and `2 × `y, respectively. The many-body Chern number can be written as a function
of the reduced state ρ as [51, 106]

C = arg(T (θx))

T (θx) = tr
(
SR1 [PR2(θx)⊗ PR2(θx)]

[
VR1ρV

†
R1
⊗ ρ
])
, (3.17)

with VR1 =
∏

(x,y)∈R1
exp(i2πs̃(y/`y)n(x, y)), and PR2(θx) =

∏
(x,y)∈R2

exp(iθxn(x, y)) (n(x, y) is
the boson density). Here s̃ is an integer that controls the number of ‘flux quantas’ injected via VR1 .
The derivation of Eqs (3.17) is based on topological quantum-field theory, and consists in rewriting
the partition function of the groundstate on topological space-time geometries [51, 106]. Having in
mind a measurement protocol, this formulation of the MBCN is simpler compared to the original
one that is given on torus geometries with twisted boundary conditions [107].

It is interesting to note that the function T (θx) has the same form as the MBTI ZD2
1. This

implies that, in direct analogy with the measurement of ZD2 , we can measure T (θx) via randomized
measurements. The corresponding experimental protocol is depicted in Fig. 3.5. The numerical
simulations of statistical errors (right panel) demonstrate that the MBCN can be faithfully esti-
mated in experimental setups with fast repetition rates (superconducting qubits, Rydberg atoms,
trapped ions, . . . ).

1Note that the same connection was first observed in Ref. [108] for a different form of the MBTIs.
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Figure 3.5: Randomized measurement of the many-body Chern number in a two-dimensional square
lattice [51]. In the right panel, the probability to identify the system in the topological phase is
represented as a function of the number of randomized measurements.
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Chapter 4

High-order functionals of the quantum
state from randomized measurements

As shown in the two previous chapters, we have developed a powerful toolbox for estimating
entanglement entropies, out-of-time-order correlators, many-body topological invariants, etc, which
are quantities associated with second-order polynomials of density matrices or operators, e.g., the
purity tr(ρ2). In the following, we present our work [14], showing how to extend the randomized
measurement toolbox to access higher-order polynomials of ρ, and how to apply these new ideas
for probing mixed-state entanglement of many-body systems.

4.1 Motivation: the positive-partial transpose condition

The entanglement condition based on Eq. (1.9) is useful to detect bipartite entanglement for a
nearly-pure state tr(ρ2AB), such as in the 10-qubit system in Ref. [43]. For generic mixed states, this
condition typically fails in detecting entanglement, and one has to consider more advanced tests [18].
This situation is particularly relevant for experiments in the regime of quantum advantage, where
only (mixed) subsystems can be measured.

Here, we consider the positive-partial transpose criterion (PPT) [109] (see also Refs. [18, 24]
for reviews, including relations to other conditions). Consider a separable state, then the partially
tranposed (PT) density matrix ρTAAB (as defined in Eq. (3.12)) can be written as

ρTAAB =
∑

k

ck

[
(ρ

(k)
A )T ⊗ ρ(k)B

]
, (4.1)

with 0 ≤ ck ≤ 1. As ρ
(k)
A and ρ

(k)
B are positive semi-definite matrices, the matrices (ρ

(k)
A )T ⊗

ρ
(k)
B are positive semi-definite, and therefore ρTAAB is also positive semi-definite. Thus, the PPT

criterion states that, for any separable state, the matrix ρTAAB does not have any negative eigenvalues.
Remarkably, the PPT criterion has been shown to be, not only a necessary, but also a sufficient
condition for diagnosing the separability of two qubits (or two qutrits), i.e., all entangled states
have in this case at least one negative eigenvalue [110]. For higher dimensional systems, the PPT
criterion, as necessary condition of separability, can be used to detect entanglement.

The entanglement monotone associated with the PPT criterion is the negativity [111]

N (ρAB) =
∑

λ<0

|λ|, (4.2)
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with {λ} the spectrum of ρTAAB. The negativity can obviously be used to detect entanglement: If

N (ρAB) > 0, ρTAAB is not positive semi-definite, and therefore the state is entangled. The negativity,
as entanglement monotone, has been also studied to quantify entanglement in many-body states in
condensed matter [112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122].

Instead of the negativity, we are interested in measuring simpler quantities, which are built
from polynomials of the partially transpose density matrix

pn = tr
[(
ρTAAB

)n]
, (4.3)

with n = 1, 2, . . . . In the context of quantum field theories, these quantities, which we here call PT
moments, have been shown to have the same universal properties as the negativity [114, 123, 124,
125].

4.2 Mixed-state entanglement from local randomized measure-
ment

First, it is worth noting that the third PT is the first moment that carries information about the
partial transpose operation. Indeed, as shown graphically below, p1 = 1, and p2 = tr(ρ2AB) is the
purity of the original state ρAB.

PT moments

ρAB ρAB

ρAB ρAB ρAB ρAB

ρAB ρAB ρAB

p1 =

p2 =

p3 =

In the following, we first present our randomized measurement protocol for PT moments. We
then show that p3 can be used to define a powerful entanglement condition that is connected to
the PPT criterion.

4.3 PT moments from local randomized measurements

Theory protocols have already been proposed to measure p3 and higher order moments using
physical copies [126] and global randomized measurements [127]. In Ref. [14], we propose and
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demonstrate an experimentally-friendly protocol to measure pn, n ≥ 3, with local random unitaries.

4.3.1 Warm-up: Randomized measurement tomography

The first ingredient for our protocol originates from an earlier work [47], where we proved that
local randomized measurements are ‘tomographically complete’. This means that, assuming that
we can perform a sufficient number of projective measurements NM ×NU , we can reconstruct the
full density matrix

ρAB = dN
∑

s,s′

(−d)−D[s,s′]Pu(s)u† |s′〉 〈s′|u, (4.4)

which we here prove graphically (using the same notations as in chapter 2)

Randomized tomography

ρ ρ u† |s〉 〈s|u u†O(s)u

Note that this identity was also proven in the N = 1 case in the context of the Hubbard model
in Ref. [56].

4.3.2 Protocol

The key idea behind our protocol is that we can use Eq. (4.4), not for doing tomography and
reconstructing the state ρ, but to access directly PT moments from randomized measurements.
To simplify our notations, let us consider the limit NM = 1, with a single projective measurement
sr = (sr1, . . . , srN ) for each random unitary ur, r = 1, . . . , Nu. In this case, Eq. (4.4) can be written

as E[ρ
(r)
AB] = ρAB with

ρ
(r)
AB =

N⊗

i=1

[
(d+ 1)u†r |sri〉 〈sri|ur − Id

]
, (4.5)

with the expectation value E over random unitaries and projective measurements. The advantage of
this framework is that it provides us with unbiased estimators of polynomial functions of ρAB based
on U -statistics [62]. This simply consists in replacing each term ρAB appearing in the expression

of pn by a term ρ
(r)
AB. This idea was first presented in Ref. [53] to obtain a new statistical estimator

for the purity

p
(e)
2 =

[
tr(ρ2AB)

](e)
=

1

Nu(Nu − 1)

∑

r 6=r′
tr
[
ρ
(r)
ABρ

(r′)
AB

]
, (4.6)

which can lead to reduced statistical errors compared to our estimator Eq. (2.20) (in a particular
error regime and at the cost of miscalibration errors [14]). As presented in our work [14], we can
simply generalize this method to access p3 (and, similarly, higher order moments) via

p
(e)
3 =

1

Nu(Nu − 1)(Nu − 2)

∑

r 6=r′ 6=r′′
tr
[
(ρ

(r)
AB)TA(ρ

(r′)
AB)TA(ρ

(r′′)
AB )TA

]
. (4.7)
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Figure 4.1: PT moments via local randomized measurements [14] a) Relation between the p3-PPT
condition and the PPT condition, (b) Measurement protocol, (c) and (d) Experimental demonstra-
tion of mixed state entanglement using the p3-PPT condition.

How exactly does our protocol differ from what is done in tomography? Here, we extract via
Eq. (4.7) the PT moment p3 from a direct multilinear operation on the measured bitstrings, i.e.,
we do not build a tomographic representation of ρ (which would be obviously costly in terms
of runtime and memory usage). Instead, the postprocessing task consists in simply calculating

overlap between tensor-product states ρ
(r)
AB, a procedure that is cheap and scalable. Also, the

framework of U -statistics guarantees ‘unbiased’ estimations, meaning that even for a finite number
of measurements, we obtain in average the right value of p3. Finally, our analytical error study
shows that the typical number of measurements to obtain p2, p3 with a given accuracy is of the order
of 2N , which is again exponentially smaller than the required number ∼ 4N for tomography [14].

4.3.3 Entanglement detection via the p3-PPT condition

For the purpose of detecting entanglement via the PPT criterion, PT moments can be used to
extract the negativity based on Chebyshev (or machine-learning) interpolation-based methods [126].
In our case, we were interested instead in using directly the value of p3 for entanglement detection.
To do so, we derived the following ‘p3-PPT condition’

ρAB ∈ PPT =⇒ p3 > p22. (4.8)

Conversely, if p3 < p22, then the states violates the PPT condition, and is therefore entangled. This
connection is illustrated graphically in Fig. 4.1a).

In order to prove the p3-PPT condition Eq. (4.10), one first defines

Xf = tr[f(ρTAAB)] =
∑

λ

tr[f(λ)], (4.9)

with f a polynomial. From this equality, we see that, if our polynomial f satisfies f(x) ≤ 0 for
x ≥ 0

ρAB ∈ PPT =⇒ ∀λ, λ ≥ 0 =⇒ Xf ≤ 0 (4.10)
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One possible choice for such f is fa(x) = −x(x− a)2, a being a real number, and therefore

ρAB ∈ PPT =⇒ Xfa = −p3 + 2ap2 − a2 ≤ 0. (4.11)

In order to obtain the most powerful condition that can detect the maximum number of entangled
states, we can choose the value of a which maximizes the value of Xfa . This maximum is obtained
for a = p2, leading to Xfa = −p3 + p22, and therefore to the p3-PPT condition Eq. (4.10).

4.3.4 Experimental demonstration

We have tested the ability of the p3-PPT condition to detect entanglement on various states,
including Werner states where this condition is shown to be equivalent to the PPT condition. Fur-
thermore, we have analyzed the experimental data of Ref. [43] to provide the first measurement of
p3. Based on this measurement, we could demonstrate mixed-state entanglement via the p3 condi-
tion, see Fig. 4.1c), d), and also study the propagation of entanglement based on the normalized
ratio p3/tr(ρ

3
AB) [114].

51



Chapter 5

Outlook

Building on the seminal work of van Enk and Beenakker [44], we have shown that randomized mea-
surements can be implemented in various platforms, and used to measure many physical quantities
related to quantum entanglement. These results act as a motivation to continue developing the
randomized measurement toolbox. I describe below four research directions that I would like to
investigate.

5.1 Optimization of randomized measurements protocols

The measurement budget, i.e., the question of the required number of measurements to obtain a
faithful estimation, is a crucial aspect for a measurement protocol. For randomized measurement
protocols, we have identified an exponential scaling of the measurements ∼ 2αn (with here n
qubits), with relatively small exponent α ∼ 1. This type of ‘friendly’ exponential scaling has
allowed us to measure entanglement entropies, fidelities, etc for the largest system sizes so far, of
sizes n = 10 [43]. Preskill et al have now established that such scaling should indeed be generically
expected when measuring quantities such as the purity [53]. This implies that our statistical
estimators are probably optimal (in terms of scaling) in the situation that we considered so far,
where all the measurement data is acquired before an estimation is made.

To improve randomized measurement protocols, we would like to develop a strategy based
on analyzing measurement data iteratively, and using the tools of Monte Carlo integration. Our
idea consists in running an importance sampling algorithm such as ‘MISER’ [128] on a classical
computer that is coupled to the quantum device subject to randomized measurements. (i) First,
the algorithm randomly chooses a few random unitaries, which are sent to the quantum device.
(ii) The corresponding randomized measurements are then analysed by MISER, which based on
statistical error analysis identifies the measurements to be performed in the quantum unit in the
next iteration. Step (ii) is finally repeated until desired accuracy is reached. In the end, the random
unitaries will be chosen adaptively, with significant reduction of the measurement budget.

5.2 Multipartite entanglement

We would like to study whether statistical correlations between randomized measurements contain
information beyond bipartite entanglement. For this, we would like to show that the quantum
information quantities that relate to multipartite entanglement, i.e., entanglement between three,
four, etc , parts of a system, can be ’extracted’. This can be done based on two approaches.
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Figure 5.1: Optimization of randomized measurements via a classical-quantum hybrid algorithm.

5.2.1 Protocol to measure the quantum Fisher information

The quantum Fisher information (QFI) has emerged as a fundamental quantity to characterize
multipartite entanglement. Above a certain value (FQ ≥ kN , N number of spins), the QFI certifies
that at least k particles are genuinely entangled, i.e., it is not possible to write the quantum state
as a mixture of density matrices that are factorized in terms involving less than k particles [129].
The QFI is also fundamental for quantum metrology, as it defines the set of entangled states that
provide an advantage over classical states for parameter estimations. Due to its nontrivial relation
to the density matrix, the QFI has never been measured for a large generic many-body state.

We believe that randomized measurements protocols provide an answer to this measurement
challenge. First, we would like to provide a protocol to measure the quantum asymmetry [130]

A = 4
tr(ρ2)− tr(ρe−iθHρeiθH)

θ2
, (5.1)

which is a lower bound to the QFI. The asymmetry has an expression that is reminiscent of a ‘state
fidelity’ which we know how to measure, see chapter 3. However, the role of statistical errors, and
therefore experimental feasibility, will be very different as asymmetry measures a ‘relative’ state
overlap with respect to an unknown quantum state.

Having via the measurement of asymmetry a lower bound of the QFI means that we can certify
that some states are multipartite entangled, while the test can remain unconclusive for some other
entangled states. We will therefore also derive a protocol to access the quantum Fisher information.
Here, the idea is that we can express the QFI as a polynomial decomposition of ρ, which can be
estimated ‘efficiently’ using randomized measurements (chapter 4).

5.2.2 Multipartite entanglement from a set a bipartite entanglement measures

In Ref. [43], we could measure the Rényi entropies of all 1024 bipartitions of a 10-ion quantum
simulators. A natural question is whether, by combining all these numbers, one can make a precise
statement about multipartite entanglement. Several theoretical attempts have been made to answer
this question in the few qubit case [131, 132]. In particular, ’sector lengths’ quantifying the amount
of k-particles correlations can be extracted from second Rényi entropies.

We would like to understand which other characteristics of multipartite entanglement can be
extracted from combinations of bipartite entanglement quantifiers: e.g. entanglement depth [131],
or other recent and promising measures such as the joint-Schmidt decomposition that provides a
decomposition of quantum states for many partitions of the system simultaneously [133].

53



Figure 5.2: Implementation of local random unitaries with Rydberg atoms

5.3 A measurement toolbox for cold atoms

Randomized measurement protocols can be routineley used to probe entanglement in trapped ions
experiments [43, 14, 49], superconducting qubits [134], NMR systems [82], because these platforms
benefit from local addressing techniques, i.e., each qubit can be controlled individually.

We would like to develop ideas to physically implement randomized measurements with Rydberg
atoms, and ultracold atoms, which suffer from constraints regarding local addressing.

5.3.1 Rydberg atoms

Rydberg atoms represent a promising platform for quantum technologies, with clear potential for
scalability and implementations of spin models for quantum simulation [90]. However, the Rydberg
atoms encoding the spins cannot be yet fully addressed locally, i.e., it is usually not possible to
apply a specific local rotation on each spin individually.

Even if we do not know how to realize a specific local unitary operation on each spin, we can
still produce an ensemble of local random unitaries described in good approximation by a certain
random ensemble. A possible approach is depicted in Fig. 5.2. One could think of using a spatial
light modulator to imprint on each atom a random energy shift, which is combined with a laser
beam that can globally flip the state of the atom. These light beams will make each atomic spin
randomly precess on their Bloch sphere. After some finite time evolution, the rotations applied on
each spin will become statistically independent, each of them described in good approximation by
the circular unitary ensemble (CUE) of random matrix theory. This is the only required ingredient
to implement randomized measurements.

Once a recipe for random spin rotations has been proposed and implemented, a series of exper-
iments in collaboration with the Browaeys group [90] has been planned, such as the measurement
of many-body topological invariants [50].

5.3.2 Protocols for Hubbard models

For Hubbard models, as realized with ultracold atoms, the total number of particles is conserved and
thus elementary random operations cannot be purely local (the elementary process, atom tunneling,
involves two sites). There is however a growing interest for applying randomized measurements in
these systems. This is motivated by the facts that (i) atoms offer large coherence time compared
the typical interaction time scales, (ii) entanglement can reveal unique features of atomic Hubbard
models [135, 136], (iii) ultracold atom setups are equipped with quantum gas microscopes [137], or
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Figure 5.3: Schematic of the system implemented in N. Roch’s experiment at Institut Néel (Greno-
ble).

high-resolution time-of-flight imaging [138], which can projectively measure particles at the single-
atom level.

In order to develop a randomized measurements protocol for measuring entanglement in Hub-
bard models, the challenge is to find strategies to generate random unitary matrices, which are
reproducible, and whose statistical properties can be described with a random matrix theory that
incorporates conservation laws. While we have presented a first method in Ref. [45], based on the
original van Enk’s protocols [44], we would like to propose an experimentally friendly new approach,
which is inspired by our protocols for spin systems [45, 43].

Instead of using spin rotations, we will consider non-interacting random unitaries in Hubbard
models as basic building blocks for these protocols. To show that this is sufficient to access quantities
like entanglement entropies, we will extend the random matrix theory framework that we have
developed for local spin rotations to such random operations.

5.4 Entanglement in quantum impurity models

With N. Roch and S. Florens (Néel Institute), and Anna Minguzzi (LPMMC), we have started a
collaboration to study and detect entanglement in Josephson junctions circuits. Nicolas Roch and
colleagues have shown that a superconducting quantum device, made of strong nonlinear Josephson
Junction coupled to a waveguide (fig. 5.3) is a promising quantum simulation platform for quantum
impurity models, such as the Kondo model [139].

Our goal will be to understand the role of entanglement in this system. For this, we will per-
form large-scale numerical simulations of the system with Density-Renormalization-Group (DMRG)
techniques, and extract entanglement entropies.

Then, we will investigate whether one can experimentally measure such entanglement entropies.
The situation significantly differs from the standard scenario of randomized measurements, as the
impurity can only be probed by measuring the photons that leave the waveguide. A possible
strategy is to consider random changes of the parameters of the junction, and to relate, via random
matrix theory, the statistical distribution of measurements performed on the output field to the
density matrix of the impurity.
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Figure 5.4: Machine learning of quantum states Our approach will consist in feeding a machine
learning algorithm with data obtained from randomized measurements, and in obtaining as output
a classification of the different features of the quantum states, and a quantum state reconstruction
in terms of a neural network.

5.5 Mid-term goal: Machine-learning assisted data processing of
quantum experiments

In the future, we would like to combine our approaches with machine learning algorithms for
classification, and quantum state reconstruction [140, 141, 7, 8, 142, 143, 144]. These methods
consist in extracting features of a quantum state using the tools of data science, and using as
input datasets of measurements, for example spin populations in a single basis [7]. This is achieved
by training and sampling neural networks representing the quantum state, where entanglement or
correlations are encoded in different layers of neurons.

One possibility would be to design and use a machine learning algorithm with a large set of data
obtained from a “quantum unit”. The key advantage of this approach is that we could construct
neural networks without a preferential measurement basis. This technique would allow thus to
extract key information, such as entanglement and topological order, without any assumption on
the quantum state.

A schematic is shown in Fig. 5.4. This data acquired from the quantum unit will be sent to
the classical machine learning unit, together with the information about random unitaries, and
“preprocessed” data obtained by analyzing statistical correlations, in order for instance to estimate
the purity of the quantum state. This preprocessed data could be used for example to adapt the
type of neural network and numerical approach to be used for the training stage. The machine
learning algorithm could be then used to classify quantum states, or to provide a reconstruction of
a quantum state based on the neural network ansatz.
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[18] O. Gühne and G. Tóth, Physics Reports 474, 1 (2009).
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