Probing mixed-state entanglement with randomized measurements

B. Vermersch (LPMMC Grenoble, & IQOQI Innsbruck)

Synthetic quantum systems

Ultracold atoms — Rydberg atoms

Choi et al., Science (2016)

Barredo et al., Science (2016)

Bernien et al Nature 551, 579 (2017).

Trapped Ions

R. Blatt, Innsbruck

Superconducting circuits

Google AI, Nature (2019)

and quantum dots, NV centers, cavity QED,...

Unique ways to create, **probe**, many-body quantum states

Applications: quantum technologies

Quantum simulators

Fermi-Hubbard simulation (MPQ)

Quantum computers

Google Sycamore chip

Understand quantum matter (superconductivity, topology, HEP,..)

Quantum algorithms Optimization problems (Annealing)

Key challenge: probe quantum properties of these many-body systems

Fermi-Hubbard system - Quantum Gas microscope

Correlations functions can be measured "directly"

$$C = \text{Tr}(\rho \hat{C})$$

Most common probing tool in AMO quantum simulation experiments.

Reduced density matrix

$$\rho_A = \operatorname{Tr}_B(\rho)$$

Entanglement condition (Horodecki 1996)

$$\mathrm{Tr}\left[\rho_{A}^{2}\right],\mathrm{Tr}\left[\rho_{B}^{2}\right]<\mathrm{Tr}\left[\rho^{2}\right]$$

Quantifying entanglement for pure states \rightarrow Entanglement entropies

$$S_A = -\text{Tr}_A \left[\rho_A \log \rho_A \right]$$
 von-Neumann

$$\begin{split} S_A^{(n)} &= \frac{1}{1-n} \log \operatorname{Tr}_A\left[\rho_A^n\right] &\leq S_A & \text{Nth Rényi} \\ & \text{purity} \\ S_A^{(2)} &= -\log(\operatorname{Tr}_A^*(\rho_A^2)) & \text{2nd Rényi} \end{split}$$

Measuring Entanglement entropies is fundamental for **Quantum Simulation**

Many-body ground states Quantum Phase transitions Topological order

Amico et al., Rev.Mod.Phys, 80, 517 (2008) Eisert et al., Rev. Mod. Phys. 82, 277 (2010)

Area law:

$$S_A^{(2)} \propto L_A^{D-1}$$

$$S_A^{(2)} \approx (c/4) \log(L_A)$$

central charge

Kitaev, Preskill, PRL 2006 Levin, Wen, PRL 2006 Jian et al, NP 2012

$$S_A^{(n)} \approx \alpha_n L_A - \gamma$$

Topological entanglement Entropy

Quantum Thermalization

P. Calabrese and J. Cardy, PRL 2006 Badarson et al, PRL 2012

Measuring the entanglement "power" of quantum computers

"Checks"

Purity checks Entanglement checks

Universal behaviors

Google Sycamore chip

Nahum et al, Phys. Rev. X 7, 031016 (2017)

How to measure entanglement in such many-body quantum systems?

A new tool: randomized measurements

Limited to `observables', correlation functions, etc

Not applicable to Entanglement-related quantities, nonlinear functions w.r.t the density matrix

Randomized measurement

Part 1: Tutorial on randomized measurements: Measuring the purity and 2nd Renyi entropy

X. Mi et al, in preparation

Part 2: Probing mixed-state entanglement via randomized measurements

Elben et al, PRL 2020

Single Hilbert-space approach [van Enk, PRL 2012]

Ex: Measuring a Single qubit purity

Projective measurement:

One measurement setting, for example z basis

$$P(0) = \langle 0 | \rho | 0 \rangle = 1$$

Randomized measurements:

Random unitary before measurements

 $P_u(0) = \langle 0 | u\rho u^{\dagger} | 0 \rangle \in [0, 1]$

 $u \in \mathrm{CUE}\,$ (Circular unitary ensemble)

Single Hilbert-space approach [van Enk, PRL 2012]

Ex: Measuring a Single qubit purity

$$P_u(s) = \langle s | u\rho u^{\dagger} | s \rangle$$

Message: The purity can be understood as statistical fluctuations over randomized measurements

Limitation: Requires ``global random unitaries" for a many-body system

Protocol for spin systems with local random unitaries

Elben, BV et al. (PRL 2018, PRA 2019)

 $u_i \in \mathrm{CUE}(d)$

Number of measurements to overcome stat. errors : ~ $2^{N[A]}$

Randomized Measurement Protocols as "experimental recipe"

$$\operatorname{Tr}\left[\rho_{A}^{2}\right] = \overline{X_{U}} \quad \text{with} \quad X_{U} = 2^{N_{A}} \sum_{s_{A}, s_{A}'} (-2)^{-D[s_{A}, s_{A}']} P_{U}(s_{A}) P_{U}(s_{A}')$$

Proof: 2 design properties of the CUE

$$\frac{\overline{(u_i)}_{s_i,s_i^{(1)}}(u_i)_{s_i,s_i^{(2)}}^*}{(u_i)_{s_i,s_i^{(2)}}(u_i)_{s_i,s_i^{(3)}}(u_i^*)_{s_i,s_i^{(4)}}} = \frac{\frac{\delta_{s_i^{(1)},s_i^{(2)}}}{d}}{\frac{\delta_{s_i^{(1)},s_i^{(2)}}\delta_{s_i^{(3)},s_i^{(4)}} + \delta_{s_i^{(1)},s_i^{(4)}}\delta_{s_i^{(3)},s_i^{(2)}}}{d(d+1)}}$$

$$\overline{\langle s_i^{(2)} | u_i^{\dagger} | s_i \rangle \langle s_i | u_i | s_i^{(1)} \rangle \langle s_i^{(4)} | u_i^{\dagger} O_i(s_i) u_i | s_i^{(3)} \rangle} = \delta_{s_i^{(1)}, s_i^{(4)}} \delta_{s_i^{(2)}, s_i^{(3)}}$$
$$= O_i(s_i) = d(d+1) | s_i \rangle \langle s_i | - dI_i$$

$$\begin{array}{c|c} u_i^{\dagger} \left| s_i \right\rangle \left\langle s_i \right| u_i \end{array} \end{array} = 2 - \text{design}$$

Take-Home-Message: Average terms involving randomized unitaries lead to very simple relation between matrix indices

Randomized Measurement Protocols as "experimental recipe"

Randomized measurement Surgery: Plugging the statistical correlations to make a quantity measurable

$$\operatorname{Tr}(\rho^2) = \sum_{m,n} \rho_{m,n} \rho_{n,m}$$

$$\rho = \rho \quad u^{\dagger} |s\rangle \langle s| u \quad u^{\dagger} O(s) u \quad \rho$$

Experimental demonstration with trapped ions

Brydges et al, Science 2019

Goal: Study the emergence of entanglement from a product state (quantum thermalization)

$$|\psi(t)\rangle = e^{-iH_{XY}t}|01\dots01\rangle \qquad H_{XY} = \hbar \sum_{i< j} J_{ij}(\sigma_i^+\sigma_j^- + \sigma_i^-\sigma_j^+) + \hbar \sum_j (B+b_j)\sigma_j^z$$

Experimental demonstration with trapped ions Brydges et al, Science 2019

<u>t=0</u> State is a product state (0101010101)→ large stat. fluctutations Experimental data for 5 qubits

 s_A, s_A'

Experimental demonstration with trapped ions Brydges et al, Science 2019

t=5 ms We have entanglement, i.e a reduced mixed state...

Probability

Experimental data for 5 qubits

Tr $[\rho_A^2] = \overline{X_U}$ with $X_U = 2^{N_A} \sum_{s_A, s'_A} (-2)^{-D[s_A, s'_A]} P_U(s_A) P_U(s'_A)$

See also pionnering works by Jaksch, Pichler, Zoller, Daley, etc with multiple copies in Hubbard systems

Renyi entropy measurements in quantum computers (Work in progress)

With Andreas Elben, Peter Zoller (Innsbruck),

Xiao Mi, Pedram Roushan, Yu Chen, Vadim Smelyanskiy, and Google AI quantum team

Goal:

- Verify quantum computing task (decoherence+ entanglement)

- Probe 2D entanglement growth

Tools: Local randomized measurements

Google Al

Renyi Entropy for Closed Systems (Metrology Applications)

- Circuits are RC with microwaves and sqrt-iSWAP gates.
- Dashed lines show fits to theory with depolarization error model.
- 8 qubits: 40K measurements, 30 random gate sets.
- 12 qubits: 250K measurements, 30 random gate sets.

Observation of entanglement growth in two dimensions

Question: How can we distinguish entanglement from decoherence?

Part II: Mixed-State Entanglement from Local Randomized Measurements

Phys. Rev. Lett. 125, 200501 (2020)

A. Elben (Innsbruck) R. Kueng (Caltech \rightarrow Linz), R. Huang (Caltech), R. van Bijnen (Innsbruck) C. Kokail (Innsbruck) , M. Dalmonte (Trieste), P. Calabrese (Trieste), B. Kraus, (Innsbruck) John Preskill (Caltech), Peter Zoller (Innsbruck), and BV

Mixed-state entanglement

Mixed-State Entanglement

 $\rho \neq \sum_{i} p_{j} \rho_{j}^{(A)} \otimes \rho_{j}^{(B)}$

What kind of entanglement detection?

Purity test:

$$\operatorname{Tr}\left[\rho_{A}^{2}\right], \operatorname{Tr}\left[\rho_{B}^{2}\right] < \operatorname{Tr}\left[\rho^{2}\right]$$

Entanglement witness:

$$\operatorname{Tr}(O\rho_{AB}) < 0$$

PPT condition

Not very powerful for highly mixed states (Brydges 2019)

The relevant operastor is state-dependent (ex: CHSH inequalities..)

Not a quantifier of mixed-state entanglement

Powerful (ex: sufficient for two qubits) Basis-independent Entanglement monotone: negativity Relevant in quantum field theories

Positive-Partial-Transpose (PPT) Condition for mixed state entanglement

How to detect entanglement via the PPT condition in multi qubit systems??

Our approach: Measuring PT moments

$$p_n = \text{Tr}[(\rho_{AB}^{T_A})^n]$$
 for $n = 1, 2, 3, \dots$

 \rightarrow Quantify mixed-entanglement in quantum-field theories:

pionnering works by P. Calabrese and co-workers

\rightarrow A measurable powerful entanglement condition Elben et al, PRL 2020

 ${\rm p_{3}\,PPT}\,condition$ $p_{3} < p_{2}^{2}$ $\,$ Implies PPT violation implies entanglement

Measuring PT moments via local randomized measurements

Key ideas:

1) **Randomized measurements are` tomographically complete`** Elben, et al PRA 2019 (see also Ohligher NJP 2013 for Hubbard models)

2) **Polynomials of the density matrix can be estimated via U-statistics** (Huang et al, Nature Physics 2020)

$$p_3 = \mathbb{E}\left[\text{Tr}\left((\rho_{AB}^{(r_1)})^{T_A} (\rho_{AB}^{(r_2)})^{T_A} (\rho_{AB}^{(r_3)})^{T_A} \right) \right]$$

 \rightarrow Multi-linear postprocessing of the data (no tomography)

 \rightarrow Measurement budget ~2^{N[AB]}

First experimental measurements of PT moments

Elben et al, Phys. Rev. Lett. 125, 200501 (2020)

Data: Brydges, Science 2019 (reanalyzed)

Entanglement detection

Entanglement spreading

Quantum-field theory predictions: P. Calabrese et al

Conclusion

Randomized measurements: a versatile toolbox to probe many-body physics in quantum experiments

Current efforts

Symmetry-resolved entanglement

V. Vitale, A. Elben, R. Kueng, A. Neven, J. Carrasco, B. Kraus, P. Zoller, P. Calabrese, BV, M. Dalmonte

https://arxiv.org/abs/2101.07814

Random Time-of-flight Microscopy

P. Naldesi, A. Elben, P. Zoller, A. Minguzzi

Random Hopping+Time of Flight

Optimized protocols

A.Rath, A. Elben, R. van Bijnen, P. Zoller, A. Minguzzi

Measuring Spectral Form Factors

L. Joshi, A. Elben, P. Zoller

Thank you!

Funding available for PhD

→ contact **benoit.vermersch@lpmmc.cnrs.fr**

