Probing entanglement in quantum technologies

Benoit VERMERSCH

(LPMMC Grenoble and IQOQI Innsbruck)

CPTGA Meeting Sept 27 2021 (Annecy)

• Quantum technologies and entanglement

• Measuring entanglement

• Current efforts

Computational complexity in computer science

The complexity hierarchy of decision problems

- Decision problems have a yes/no answer
- **Complexity:** scaling of resources with respect problem size (for a deterministic Turing machine)

Important classes

- **P:** Problem solved in polynomial time (w.r.t size of the problem)
- **NP:** A yes answer can be verified in polynomial time
- **NP-HARD:** Every problem in NP can be transformed into this problem in polynomial time
- NP-COMPLETE: A problem that is both NP and NP-HARD

Computational complexity in computer science

Example:

• Factorization decision problem (F) : can a given number be factorized?

- No polynomial time algorithm known \rightarrow We do not know if F is in P
- Solutions can be checked `easily' \rightarrow F is in NP

Can we use a quantum machine to solve such `hard' problems?

1 classical bit

1 quantum bit (qubit)

N classical bits

$$\begin{split} |\psi\rangle &= |00000000\rangle \\ \downarrow \\ |\psi\rangle &= |1111111\rangle \end{split}$$

 2^{N} configurations

N qubits

 $|\psi\rangle = c_0 |0000000\rangle + \dots + c_{2^N - 1} |1111111\rangle$

2^N configurations 'simultaneously'

The power of quantum parallelism

Example: Data search on 4 bit entries with a classical computer

Goal: find unique x such that f(x)=1

Exponential complexity : $O(N = 2^n)$

The power of quantum parallelism

The quantum way (Grover 1996)

- · Exponentially less iterations with a quantum computer
- Require entangling operations (interactions between qubits)
- Bad news: the scaling is still exponential
- If the scaling would have been polynomial, I could have solved any NP problem in polynomial time..

The first era of quantum computing

experimentation via its cloud portal.

Credit: https://thetechfool.com/

The NISQ Era and beyond (2018-)

NISQ : noisy intermediate scale quantum

Quantum computing versus errors

• With quantum error correction, we need more qubits (>1000) to perform faithful and useful computation

The Surface Code (arxiv:1208.0928)

J. Preskill « I've already emphasized repeatedly that it will probably be a long time before we have f**ault-tolerant** quantum computers solving hard problems. »

Current efforts in quantum technologies

→ Understand quantum problems: strongly correlated electrons, topological materials, disordered systems, quantum gravity, quantum chemistry

(c.f Talk by Michele)

Quantum metrology

The key physical concept in quantum technologies is many-body entanglement

Example: Bell state
$$|\Psi
angle=rac{1}{\sqrt{2}}\left(|0
angle\otimes|0
angle+|1
angle\otimes|1
angle
ight)$$

The state is **and to a**

Entanglement is the key concept/resource in quantum information theory

For `noisy' quantum states

Density matrix $\rho = \operatorname{Tr}_{E}(|\psi_{ABE}\rangle \langle \psi_{ABE}|)$

Describes all system properties as a positive semi-definite matrix

Example: Noisy Bell state

$$|\psi_{ABE}\rangle = \frac{\sqrt{1-p}}{\sqrt{2}} \left(|01\rangle + |10\rangle\right) |0_{\text{photon}}\rangle + \sqrt{p} |00\rangle |1_{\text{photon}}\rangle$$
$$\rho = (1-p) |\psi_B\rangle \langle\psi_B| + p |00\rangle \langle00|$$

Two subsystems A and B are **entangled** iff $\rho \neq \sum_{j} p_{j} \rho_{j}^{(A)} \otimes \rho_{j}^{(B)}$ $(p_{j} \ge 0)$

• Reduced density matrix $ho_A = \operatorname{Tr}_B(
ho)$

• Entanglement condition (Horodecki 1996)

purity $\operatorname{Tr}\left[\rho_{A}^{2}\right], \operatorname{Tr}\left[\rho_{B}^{2}\right] < \operatorname{Tr}\left[\rho^{2}\right]$

Example: Bell state
$$|\Psi\rangle = \frac{1}{\sqrt{2}} (|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle)$$
 $\rho = |\psi\rangle \langle \psi|$
 $\rho_A = \frac{1}{2} (|0\rangle \langle 0| + |1\rangle \langle 1|)$ $\operatorname{Tr}(\rho_A^2) = \frac{1}{2} < 1$

States which are quasi pure globally, but not pure (mixed) locally, are entangled

• Entanglement measures (pure states)

von-Neumann entropy
$$S_A = -\operatorname{Tr}_A \left[\rho_A \log \rho_A \right]$$
Rényi entropy $S_A^{(n)} = \frac{1}{1-n} \log \operatorname{Tr}_A \left[\rho_A^n \right] \le S_A$

• Entanglement entropies are entanglement monotones for pure states (they cannot increase under local operation)

Quantum computing:

Purity and Entanglement Verification

Quantum simulation (understanding quantum problems in an experiment):

Quantum Phase transitions

P. Calabrese and J. Cardy, J. Stat. Mech (2004). Humeniuk, Roscilde PRB (2012)

Kitaev, Preskill, PRL 2006 Levin, Wen, PRL 2006 Jian et al, NP 2012

$$S_A^{(n)} \approx \alpha_n L_A - \gamma$$

Topological entanglement entropy

How to measure the purity/entanglement entropies in such many-body quantum systems?

• Quantum technologies and entanglement

Measuring entanglement

• Current efforts

- Limited to `observables', correlation functions, etc
- Not directly applicable to nonlinear functions w.r.t the density matrix $\,{
 m tr}(
 ho^2)$
- It is possible to measure the density matrix with 3^{N} measurement settings (Tomography) with a measurement budget $4^{N}-8^{N}$

Randomized measurement

Correlations of probabilities

Ensemble average over random unitaries

$$\overline{P_{\rho, \boldsymbol{U}}(\mathbf{s}_1)P_{\rho, \boldsymbol{U}}(\mathbf{s}_2)}$$

• Randomized measurement

× Pure state |0>
$$P_u(s) = |\langle s|u|0\rangle|^2$$

 \rightarrow fluctuates in [0,1]

Completely mixed state

$$P_u(s) = \langle s | u \frac{1}{2} u^{\dagger} | s \rangle = \frac{1}{2}$$

 \rightarrow does not fluctuate!

• The purity can be understood as statistical fluctuations over randomized measurements

• Statistics of randomized measurements equals purity:

variance over the circular unitary ensemble (CUE)

$$\operatorname{tr}(\rho^2) = (d+1)\sum_{s} \operatorname{var}(P_u(s)) + \frac{1}{d}$$

• Limitation: Requires ``global random unitaries" for a many-body system

Protocol for qubit systems with local random unitaries

Elben, BV et al. (PRL 2018, PRA 2019)

 $u_i \in \mathrm{CUE}(d)$

Local random unitaries from **CUE**

$$U_A = \bigotimes u_i$$

Number of measurements to overcome stat. errors : ~ $2^{N[A]}$ (Compared to tomography: ~ > $4^{N[A]}$)

Proof

Elben, BV et al. (PRL 2018, PRA 2019)

- `Replica' trick $\operatorname{Tr}(\rho_A^2) = \operatorname{Tr}(S\rho_A \otimes \rho_A)$ Swap operator $S = \sum_s |s',s\rangle \langle s,s'|$
- 2-design properties of CUE local unitaries (Replica+`Twirling')

• Our goal is to find a `measurable' O such we keep only the term $\sigma=S$

Randomized measurements protocol with local unitaries

Proof

Elben, BV et al. (PRL 2018, PRA 2019)

• For
$$O = 2^N \sum_{s,s'} (-2)^{D[s,s']} |s,s'\rangle \langle s,s'| \qquad \mathbb{E}_U \left[(U \otimes U)(O)(U^{\dagger} \otimes U^{\dagger}) \right] = S$$

• Replacing S in our replica trick expression $\operatorname{Tr}(\rho_A^2) = \operatorname{Tr}(S\rho_A \otimes \rho_A)$

Tr
$$[\rho_A^2] = \overline{X_U}$$
 with $X_U = 2^{N_A} \sum_{s_A, s'_A} (-2)^{-D[s_A, s'_A]} P_U(s_A) P_U(s'_A)$

Brydges et al, Science 2019

$$|\psi(t)\rangle = e^{-iH_{XY}t}|01\dots01\rangle$$

$$H_{XY} = \hbar \sum_{i < j} J_{ij} (\sigma_i^+ \sigma_j^- + \sigma_i^- \sigma_j^+) + \hbar \sum_j (B + b_j) \sigma_j^z$$

Following the growth of entanglement as a function of time

Brydges et al, Science 2019

arXiv:2104.01180

Google's Sycamore

cf. talk by Michele

Toric code:

- \rightarrow Toy model for interacting topological phases
- \rightarrow Quantum error correction code

The topological entanglement entropy

 $S_{\rm topo} = S_A + S_B + S_C - S_{AB} - S_{BC} - S_{AC} + S_{ABC}$

is quantized (Levin, Wen, Preskill, Kitaev)

• Quantum technologies and entanglement

• Measuring entanglement

Current efforts

Positive-Partial-Transpose (PPT) Condition for mixed state entanglement

Peres, Horodecki, Horodecki, Horodecki 1996

• We consider the Partial-Transpose (PT) `map'

$$\rho = \sum_{j} \rho_{i,j,k,l} \ket{i,j} \langle k,l| \to \rho^{\Gamma} = \sum_{j} \rho_{i,j,k,l} \ket{k,j} \langle i,l|$$

• If the state is separable (not entangled)

$$\rho = \sum_{j} p_{j} \rho_{A}^{(j)} \otimes \rho_{B}^{(j)} \longrightarrow \rho^{\Gamma} = \sum_{j} p_{j} (\rho_{A}^{(j)})^{T} \otimes \rho_{B}^{(j)}$$
 is positive semi-definite

PPT Condition: If the PT density matrix is not semi-definite, then the state is entangled

How to probe this `concept' in quantum computers?

Our approach: Measuring PT moments via randomized measurements

A. Elben (Innsbruck \rightarrow Caltech) R. Kueng (Caltech \rightarrow Linz), R. Huang (Caltech), R. van Bijnen (Innsbruck), C. Kokail (Innsbruck) , M. Dalmonte (Trieste), P. Calabrese (Trieste), B. Kraus, (Innsbruck) John Preskill (Caltech), Peter Zoller (Innsbruck), and BV, PRL 2020

$$p_n = \text{Tr}[(\rho_{AB}^{T_A})^n] \text{ for } n = 1, 2, 3, \dots$$

- Quantify mixed-entanglement in quantum-field theories
- A measurable powerful entanglement condition

 $\operatorname{Tr}(\rho^{\Gamma}(\rho^{\Gamma}-p_2)^2)=p_3-p_2^2\geq 0$ for non-entangled states

- Accessible via randomized measurements

Experimental measurements of PT moments

Elben et al, Phys. Rev. Lett. 125, 200501 (2020)

Data: Brydges , Science 2019 (reanalyzed)

From quantum states to quantum evolutions

• The time evolution operators summarizes all the property of the time evolution of a closed quantum system

$$\left|\psi(t)\right\rangle = T(t)\left|\psi_{0}\right\rangle$$

• In quantum chaos theory, **the eigenvalues** of the time evolution operator display universal signatures:

Can we observe these universal features of quantum chaos in a quantum computer?

Probing many-body quantum chaos in quantum simulators

Measurement protocol for Spectral form factors

Lata Joshi , A. Elben, A, Vikram, BV, V. Galitski, and P. Zoller

arXiv:2106.15530

$$\mathbb{E}_U\left[(U^* \otimes U)(O)(U^T \otimes U^{\dagger})\right] = 2^{-N} \left|\Phi_N^+\right\rangle \left\langle\Phi_N^+\right|,$$

where $|\Phi_N^+\rangle = 2^{-N/2} \sum_s |s\rangle \otimes |s\rangle$ is a Bell state.

2) We express the SFF as a function of our twirl

$$K(t) = \langle \Phi_N^+ | \mathbb{1} \otimes T(t) | \Phi_N^+ \rangle \langle \Phi_N^+ | \mathbb{1} \otimes T^{\dagger}(t) | \Phi_N^+ \rangle$$

$$K(t) = \mathbb{E}_{U} \left[K_{U}(t) \right]$$
$$K_{U}(t) = \sum_{s} (-2)^{|s|} |\langle s| U^{\dagger} T(t) U |0_{N} \rangle|^{2}$$
Measurable!

<u>``</u>

-- < >

Thank you for your attention

And thanks to my collaborators on randomized measurements

Peter Zoller

Andreas Elben (\rightarrow Caltech)

and M. Dalmonte, I. Cirac, R. Kueng, R. Huang, J. Preskill, B. Kraus. C. Kokail, R, van Bijnen, L. Sieberer, A. Rath, J. Carrasco, A. Neven, F. Pollmann, Z. P Cian, M. Hafezi, G. Zhu, J. Yu, H. Dehghani, M. Barkeshli, N. Yao, M. Joshi, T. Brydges, C.Maier, B. Lanyon, P. Jurcevic, C. Roos, R. Blatt, P. Calabrese, V. Vitale, C. Branciard, A. Minguzzi

