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Quobly was launched in November 2022
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Quantum Information Team @ Quobly

Measurements & Benchmarking

Tensor-Network Simulations 
& quantum algorithms R&D 
(open-source)

Architectures and quantum error correction
Surface-17 code
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Today’s menu

Moderate scale randomized measurements

Large scale learning via randomized measurements 

1) Motivations
2) Measurements of entanglement entropies

3) More advanced usage and “statistical tricks”
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M. Votto, W. Lam (UGA)

Experiments

P. Zoller (UIBK) A. Elben (Psi) J.I.C Cirac (MPQJ. Preskill, R. Huang (Caltech)

L. Piroli (Unibo) 

R. Kueng (Linz)

M. Serbyn. M. Ljubotina (ISTA) V. Vitale (Pasqal)

Xiao Mi (Google) T. Brydges, M. Joshi,            C. Roos, R. Blatt (UIBK)P.Jurcevic (IBM)

A. Rath (IQM)

And many more…

Randomized measurements

The randomized measurement toolbox A. Elben, S. T. 
Flammia, H.-Y. Huang, R. Kueng, J. Preskill, BV, P. Zoller, 
Nature Physics Review (2023).

QUOBLY        Teratec 2024, Nov 14th 2024

Randomized measurements for large-scale experiments

B. Kraus (TUM)

C. Lancien (UGA)
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Nowadays several experiments realize large-scale programmable quantum
many-body systems (∼100 qubits) [Arute, Nature ’19; Bluvstein, Nature ’22 ]

LARGE-SCALE QUANTUM EXPERIMENTS
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WHAT’S THE POINT OF LARGE-SCALE QUANTUM EXPERIMENTS

Quantum computing Quantum simulation 

Solves a classical problem or

quantum problem via a quantum algorithm

Emulates many-body physics via an artifical 

quantum material

Credit
Manoj Joshi (IQOQI)

We hope to realize a computation that is not (easily)
accessible to classical computers: Quantum advantage

We want to obtain meaningful physical properties
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Entanglement: A central concept in quantum computing & 
quantum simulation

Qubit = {|0>,|1>}

Entanglement is quantified via Entropies

Reduced Density Matrix
Purity
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• Most basic non-classical feature of quantum computers.

• All important quantum algorithms involve quantum operations that generate
entanglement.

• Quantum algorithms with a low level of entanglement can be efficiently simulated with a 
classical computer (Eisert RMP 2010)

• Universal predictions for large-scale quantum computers (eg Nahum PRX 2017)Andersen et al, 
Nature 2025

Entanglement: A central concept in quantum computing & 
quantum simulation
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• Distinguish quantum phases in quantum simulation, spots 
quantum phase transitions (Eisert, RMP 2010)

• Describes many-body  quantum dynamics, thermalization, 
disorder physics, etc

Andersen et al, 
Nature 2025

Ground-State

Excited-States

Entanglement: A central concept in quantum computing & 
quantum simulation
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Measurements in quantum experiments
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Randomized measurements: A single data acquisition procedure

For example, the purity formula
(Elben, BV, et al, PRL 2018)

Repeat NUxNM times
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First demonsration: Brydges et al, Science 2019
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First demonstration: Brydges et al, Science 2019
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Recent use of RM: Andersen et al, Nature 2025

A

Demonstration of entanglement’s area law
In the ground-state 

Entanglement
“links”
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Today’s menu

Moderate scale randomized measurements

Large scale learning via randomized measurements 

1) Motivations
2) Measurements of entanglement entropies

3) More advanced usage and “statistical tricks”
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Experimental Robust Shadow Estimation
and measurement of the quantum Fisher information
(Vitale et al, PRX Q 2024)
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Beyond the purity: Classical Shadows as the modern 
framework to postprocess randomized measurements



20

Quantum Fisher information measurements (Vitale et al, PRX Q 2024)

The Quantum Fisher information (A=H, mixed state version, Braustein and Caves, PRL 1994)

Quantum Cramer Rao bound on parameter estimation
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Mapping the quantity to a measurable “shadow’ quantity
Multi-copy observable
MCO

Swap operator
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There will be a tradeoff in choosing n to control both systematic and statistical errors

We will probably need many measurements and postprocessing time, we will need some tricks to improve on that..
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Trick 1: Common randomized measurements (BV et al, PRX Quantum 2023)

Robust classical
shadow

Reference state shadow

Reference state

n-copy observable
Functions of O and of the density matrix

Number of measurement settings Number of shots per measurement settings

Such shifted shadow is still an unbiased estimator of the density matrix

But with improved variance properties

In some experimements we have a reference state in mind (eg GHZ state)
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Trick 1: Batching (Rath et al PRX Quantum 2023)

U-statistics estimations (R. Huang et al, Nature Physics 2020)

Postprocessing runtime: NB
2, NB

3, etc

We group several shadows into NB>n batches to simplify postprocessing

Barely affects statistical errors in the `high accuracy regime’
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Quantum Fisher information measurements (Vitale et al, PRX Q 2024)

n=0,1,2

Limit for genuine multipartite
Entanglement detection

Petar Jurcevic 
(IBM)

Vittorio Vitale
N- Qubit GHZ state
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Some recent uses of randomized measurements to access entanglement

* : Data from Brydges et al

Quantities/Concepts Platform Reference

Entropies Ions Brydges et al Science 2019

OTOCs Ions Joshi et al, PRL 2020

Spectral Form Factors Superconducting qubits Dong et al, PRL 2025

Mixed-state entanglement* Ions Elben et al, PRL 2020

Cross-Platform verification* Ions & superconducting qubits Elben et al, PRL 2020
Zhu et al, Nature Comm 2022

Topological entropies Superconducting qubits Satzinger al, Science 2021

Symmetry resolved Entropies* Ions Vitale et al, Sci Post 2022

Entropies (live) Ions Stricker et al, PRX Q 2022

Operator entropies* Ions Rath et al, PRX Q 2023

Quantum Mpemba effect Ions Joshi et al, PRL 2024

Quantum Fisher information (Robust): Superconducting qubits Vitale et al, PRX Quantum 2024 

Entropies (2D) Superconducting qubits Andersen et al, Nature 2025

Entropies (Robust) Superconducting qubits Hu et al, Nature Communications 
16, 2943 (2025)

Entropies (large-scale) & tomography Superconducting qubits Votto et al, in preparation

First measurements
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RandomMeas.jl: Open-Source Package

A. Elben (Psi) 

https://github.com/bvermersch/RandomMeas.jl & Julia’s General Registry

https://github.com/bvermersch/RandomMeas.jl
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Summary first part & transition

Many physical quantities have been recently measured with RM: Experimentally friendly 
acquisition, and numerically friendly “universal” postprocessing.

Robustness/Practical aspects well understood and experimentally demonstrated

For the purity and related quantities, number of measurements scales as 2aN, a ≈ 1,  
implies typically N <14

More info in our review  “The randomized measurement toolbox”
Elben, Flammia, Huang, Kueng, Preskill, BV, Zoller, Nat Rev Phys 2023

Let’s expand this toolbox to large-scale systems reconstructions!
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Large-scale entropies and tomography via randomized 
measurements

P. Zoller (UIBK) J.I.C Cirac (MPQL. Piroli (Unibo) M. Serbyn. M. Ljubotina (ISTA)

Connections to MPS/MPO
Gibbs State Tomography
Litterature

Learning mixed quantums in large-scale experiments (to appear on arxiv)

M. Votto (UGA) C. Lancien (UGA)

Probing many-body quantum states in large-scale experiments
with randomized measurements, BV et al, Phys. Rev. X 2025

Baumgratz et al, NJP 2013
Torlai et al, Nature Comm 2023
…
Anshu et al, Nature Physics 2021 (Review)
Joshi et al, Nature 2023
…
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Goal a Tomography via randomized measurements

Matrix-Product-Operator (MPO)
Represents the quantum state as a 1D 
compressed object with linear cost in 
storage and manipulation

describe output states of one-dimensional 
noisy/finite depth quantumcircuits, as well as 
one-dimensional thermal states relevant to 
quantum simulation

The learned state can be used to extract physical properties 
Conveniently (no more batching, etc) and for error mitigation, etc
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Learning mixed quantums in large-scale experiments: Technical statements

We assume the existence of a finite correlation length in the MPO framework.

This implies the approximate factorization condition (Vermersch al Phys. Rev. X 2024)

This assumption is satisfied in 1D quantum circuits, quantum Gibbs states (Capel et al, arxiv: 2024 in particular)
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Learning mixed quantums in large-scale experiments: Technical statements

Votto et al (arxiv:..) : In this case, one can learn the state using the inner product as cost function 

With the MPO

With arbitrary small total error and polynomially many measurements

Proof idea: Gradient w.r.t local tensors can be set to zero using the rule

Classically computable Finite support “observable”, thus efficiently measurable
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Learning mixed quantums in large-scale experiments: Demonstration
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Learning mixed quantums in large-scale experiments: Demonstration

Experimental tomography of a N = 96 mixed qubit state (previous results: N = 20 qubits, MPS  (Kurmapu et al PRXQ 2023) 
or Gibbs states (Joshi et al, Nature 2023)

The MPO σ captures the noisy features of the experiment.
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Learning mixed quantums in large-scale experiments: Extracting physical quantities

Purity

Estimation
through shadows
(lenghty calculation)

Direct contraction
Of the MPO

Estimation
of the ideal
Pure state

Entropy
Magnetization
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Learning mixed quantums in large-scale experiments: Applications

Quantum Error Mitigation: 

Based on a noisy experimental device, estimation of noiseless observable estimation values
based on noise extrapolation, noise models & extra sampling, virtual distillation, etc (Cai et al, RMP 2023)

Here: Quantum Principal Component analysis (stronger version of virtual distillation) 
via the DMRG algorithm of tensor-networks (Review: Schollwoeck, Annals of Physics, 2011)

We search classically for the ground state of
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Learning mixed quantums in large-scale experiments: Applications

Large-scale resconstruction of noiseless expectation values, and von Neumann entanglement entropies
(Despite the original exponentially small original mixed state)



Benoît Vermersch

Carlos Ramos-Marimón

Thibaud Louvet

Nathan Miscopein

Dimitri Lanier Amara Keita

The Quantum Information Team at Quobly

Contact me if you want to know 
more, or join!

Conclusions and Thank you

P. Zoller (UIBK) J.I.C Cirac (MPQL. Piroli (Unibo) M. Serbyn. M. Ljubotina (ISTA)

Learning mixed quantums in large-scale experiments (to appear on arxiv)

M. Votto (UGA) C. Lancien (UGA)

Probing many-body quantum states in large-scale experiments
with randomized measurements, Phys. Rev. X 2025



Quobly was born from the combined expertise
of CEA and CNRS at Grenoble
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INDUSTRY

READY

ACADEMIC

READY DEVELOPING THE KNOW-HOW FOR CONTROLLING MULTIPLE SPIN QUBITS

MANUFACTURING SPIN QUBITS IN INDUSTRIAL ENVIRONMENTS

2017

Coherent long-distance 
displacement of 
individual electron spins

Coherent control of individual electron 
spins in a 2D array (9 quantum dots) 

Distant spin entanglement 
via fast and coherent 
electron shuttling

2020 2021

We leverage the semicon. industry’s 
60+ years of experience, 
fabless approach using 
commercial FD SOI technologies

A CMOS silicon
spin qubit

2016

2019

2022

2025

Gate-based high 
fidelity spin readout 
in a CMOS device

A single hole spin with 
enhanced coherence in 
natural silicon

Demonstrating
QAM Multiplexing for 
Spin Qubits
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Back to ions: Experimental liouvillian learning with process shadows

Peter 

Zoller
Tobias 
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Barbara 

Kraus
William

Lam

Daniel Stilck

Franca

Lata Kh

Joshi

Christian 

Roos

Rainer 

Blatt

Florian 
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Johannes

Franke
Manoj 

Joshi
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Back to ions: Experimental liouvillian learning with process shadows

◦ Wiebe et al. "Hamiltonian learning and certification using quantum 

resources." PRL (2014).

◦ Holzäpfel et al. "Scalable reconstruction of unitary processes and 

Hamiltonians." Phys Rev A (2015).

◦ Bairey, Arad, and Lindner. "Learning a local Hamiltonian from local 

measurements”, PRL (2019).

◦ Evans, Harper, Flamia, “Scalable Bayesian Hamiltonian learning”, 

arXiv:1912.07636 (2019)

◦ Li, Zou, and Hsieh. "Hamiltonian tomography via quantum quench“, PRL

(2020).

◦ Hu et al. "Ansatz-free Hamiltonian learning with Heisenberg-limited scaling." 

arXiv preprint arXiv:2502.11900 (2025).

◦ Olsacher et al. "Hamiltonian and Liouvillian learning in weakly-dissipative 

quantum many-body systems." Quantum Science and Technology (2025).

◦ …. Many more

Goal: Learn the coefficients

One key application: Verified quantum simulation: Cai et al, arxiv:2311.14818, Trivedi et al, Nature Comm. 2025 
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Back to ions: Experimental liouvillian learning with process shadows

A closed linear system of equations,  pair-wise

Postprocessing for each pair independtly gives a N2 runtime postprocessing algorithm

Theory: Stilck França, Daniel et al « Efficient and robust estimation of many-qubit {Hamiltonians », Nature. Comm. 2024

Unique Pseudo-inverse for enough initial states and measurement observables



43

is an unbiased estimation of  

The probability to have a compatible setting is independent of system sizes

Back to ions: Experimental liouvillian learning with process shadows

Where the sum runs over the NC “compatible” settings r defined such as 

and such that the rotation v maps Oij to the computational basis
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Back to ions: Experimental liouvillian learning with process shadows
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