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How to quantify pure-state entanglement?

A B

• For pure states, entropies of the reduced state ρA = TrB(|ψ〉 〈ψ|) quantify

entanglement

S = −Tr[ρA log(ρA)] von Neumann entropies

Sα =
1

1− α
log[Tr(ραA)] Rényi entropies

• Entanglement entropies quantity quantum resources and quantum information

( Excellent notes from J. Preskill on Quantum Shannon Theory)
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Entropies can distinguish the entanglement structure of many-body pure quan-

tum states

• Haar random states |ψ〉 = U |0〉⊗N with U randomly sampled from the Haar
measure (CUE)

• Good description of chaotic systems in condensed matter and black holes

• Obey a volume law S ∝ min(NA,NB).

• For the groundstate of a gapped local Hamiltonian → area law S ∝ N
(boundary)
A

• Scaling laws of S also reveal phase transitions, a topological phase, etc Eisert

RMP 2010
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Mixed-state entanglement

• Typically the state of a quantum system is ‘mixed’ due to an environment

A B

Environment

• We define the density matrix of the quantum computer

ρ = TrE (|ψ〉 〈ψ|)

• A and B are entangled iff

ρ 6=
∑
i

piρ
(i)
A ⊗ ρ

(i)
B

• Entanglement entropies do not provide a complete description of mixed-state

entanglement.
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Mixed-state entanglement via the PPT criterion and negativity

• One approach (out of many): Peres-Horodecki PPT criterion:

• Consider the partial-transpose operation

ρ =
∑

iA,jA,iB ,jB

ρiA,jA,iB ,jB |iA, iB〉 〈jA, jB | → ρΓ =
∑

iA,jA,iB ,jB

ρiA,jA,iB ,jB |jA, iB〉 〈iA, jB |

• If a state ρ =
∑

i piρ
(i)
A ⊗ ρ

(i)
B is separable,

ρΓ =
∑
i

pi [ρ
(i)
A ]T ⊗ ρ(i)

B is positive semi-definite

• The negativity E = log
∑

λ∈spec(ρΓ) |λ| is an entanglement monotone (Vidal, 2001)
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Negativity reveals the entanglement structure of mixed quantum states

• Consider a Haar random reduced mixed state ρ on N = NA + NB + NC qubits

ρ = TrC (|ψ〉 〈ψ|)

• What is the average negativity as a function of the number of qubits NA,NB ,NC?

• Aubrun, Nechita, Shapourian, etc: There are three entanglement phases
a) b)

• This talk: How to detect such phases in an experiment?
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Mixed-state entanglement from local randomized measurements

• Joint work with A. Elben, R. Kueng, H-Y. Huang, R. van Bijnen, C. Kokail, M.

Dalmonte, P. Calabrese, B. Kraus, J. Preskill, P. Zoller [Phys. Rev. Lett. 125,

200501 (2020)]

• Our starting point: The randomized measurement toolbox

• Goal: Detect entanglement via the PPT condition in a qubit system
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The randomized measurements toolbox

qubit 1 |0〉

qubit 2 |0〉

...
...

qubit N |0〉

Circuit

u1

u2

uN

• Randomized measurements: We

measure Pu(s) = 〈s|uρu†|s〉,
u = u1 ⊗ · · · ⊗ uN , ui ∈ CUE.

• We extract quantities of interest from

the statistics of Pu(s).

• Unbiased analytical estimators and performance guarantees

• Nonlinear functions of ρ require typically ∝ 2N measurements

• See also impressive works by Andreas Ketterer, Lucas Knips, Otfried Gühne, et al

Review: The randomized measurement toolbox A. Elben, S. T. Flammia, H.-Y. Huang,

R. Kueng, J. Preskill, B. V, P. Zoller, arXiv:2203.11374 11



Experimental uses of randomized measurements

Entanglement Rényi entropy growth, Brydges et al, Science 2019

Topological entanglement entropy,

Satzinger et al, Science 2021
Cross Platform Fidelities: Elben et al, PRL 2020,

Zhu et al, arXiv:2107.11387

but also otocs, topological invariants, quantum Fisher information, etc 12



Measuring partial-transpose moments experimentally

• Consider the partial-transpose (PT) moments

pn = Tr[(ρΓ)n], n = 2, . . .

• PT moments are experimentally accessible via local classical shadows (see also

Gray, PRL 2017, Zhou PRL 2020)

qubit 1 |0〉

qubit 2 |0〉

...
...

qubit N |0〉

Circuit

u1

u2

uN

Classical shadows are built from bitstrings

ρ(r) =
⊗
i∈AB

(
3ui |k

(r)
i 〉 〈k

(r)
i | u

†
i − 1i

)
E [ρ(r)] = ρ

PT moments are extracted from bitstrings

p̂n =
1

n!

(
M

n

)−1 ∑
r1 6=r2 6=... 6=rn

Tr
[
(ρ̂

(r1)
AB )Γ . . . (ρ̂

(rn)
AB )Γ

]
.
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The p3-PPT condition

A B

Environment

• Using the PPT condition: If ∃λi < 0 ∈ Spec(ρΓ) then A and B entangled.

• We propose the experimentally measurable p3-PPT condition

If p3 − p2
2 =

∑
i

λi (λi − p2)2 < 0 then A and B entangled.
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Experimental demonstration

• Data from Brydges et al, Science 2019, reanalyzed.
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d)

• Follow-ups conditions: Neven et al, NJP quantum info 2021, Yu et al, PRL 2021.

• Can we distinguish different kinds of entanglement structure?
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Revealing entanglement structure via partial-tranpose moments

• Joint work with M. Votto, J. Carrasco, V. Vitale, C. Kokail, P. Zoller, and B.

Kraus

• Can we use PT moments to experimentally probe an “entanglement phase

diagram”?

a) b)
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Introducing r2

• For a Haar random state made of NA + NB + NC qubits, we obtain the average

PT moments of the reduced state ρ = trC (|ψ〉 〈ψ|) (LX = 2NX )

E [pn] ' 1

(LALBLC )n

∑
τ∈Sn

L
c(τ)
C L

c(σ+◦τ)
A L

c(σ−◦τ)
B ,

• We define an ‘averaged’ ratio r̃2

r̃2 =
E [p2]E [p3]

E [p4]
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r2 reveals the entanglement phase diagram of random states

• r2 is quantized in the thermodynamic limit N →∞

c)

a) b)

d)
• Remark: How to do distinguish the Max-Ent Phase from the PPT phase?
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r2 for individual quantum states

• Statistical fluctuations vanish in the thermodynamical limit. Thus, we can study

r2 = (p2p3)/p4 for individual quantum states.

• r2 probes the ‘shape’ of the spectrum of ρΓ, {λi}.

r2 =
(
∑

i λ
2
i )(
∑

j λ
3
j )

(
∑

k λ
4
k)

• In particular, λ2
i = p3 implies r2 = 1.
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r2 for individual quantum states

a) b)

d)c)
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A very sensitive test of randomness

• Does r2 make the difference between Haar random states and different states?

• First example: Clifford states generated by the n-qubit Clifford group (unitaries

that map Pauli operators to Pauli operators).

• Clifford states can be highly entangled, but they are classically simulatable

(Gottesman-Knill theorem)
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A very sensitive test of randomness

• According to the ‘Bravy’ decomposition,

|ψ〉 = UAUBUC |0〉⊗sA |0〉⊗sB |0〉⊗sC |GHZ〉⊗gABC |EPR〉⊗eAB |EPR〉⊗eAC |EPR〉⊗eBC ,

which implies r2 = 1

• This implies the entanglement saturation phase r2 > 1 is not Clifford simulatable

c)

a) b)

d)
• We obtained similar conclusions for other classically simulatable states: fermionic

Gaussian states, Matrix-Product-States. 23



Summary - Outlook

• PT moments provide practical detection criteria for mixed-state entanglement

• They can also distinguish different types of entanglement.

• What is the behavior of r2 for non-integrable topological ordered states? is it

different for an integrable model (toric code)?

• Can we simplify the experimental procedures to “test” Haar random states? eg

use polynomial functionals instead of a ratio, that we can be measured with

generalized swap tests.
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Thank you!
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The p3 negativity complements r2

• We define the p3 negativity

E3 =
1

2
log

(
p2

2

p3

)
• p3-PPT condition: E3 > 0 implies

entanglement

• For Clifford states, E3 = E .

• The p3 ppt condition detects all

entangled states in the

thermodynamic limit!

d)c)

a) b)
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