Probing the entanglement structure of many-body quantum states via

partial-transpose moments

Quantum measurements theory conference, Bad Honnef

Benoit Vermersch
July 11 2022

LPMMC Grenoble & 1QOQI Innsbruck

Grenoble Alpes

@ veA @ 1O FWF anr® 4 A



From pure to mixed-state entanglement in many-body quantum systems
Mixed-state entanglement from local randomized measurements

Revealing entanglement structure via partial-tranpose moments



From pure to mixed-state entanglement in many-body quantum systems



How to quantify pure-state entanglement?
X X X I X X XN
A B

o For pure states, entropies of the reduced state py = Trg(|¢) (¥|) quantify

entanglement

S = —Tr[palog(pa)] von Neumann entropies

1
Se = 1 log[Tr(p%)] Rényi entropies
-«

e Entanglement entropies quantity quantum resources and quantum information
( Excellent notes from J. Preskill on Quantum Shannon Theory)



Entropies can distinguish the entanglement structure of many-body pure quan-

tum states

o Haar random states 1)) = U |0)®" with U randomly sampled from the Haar
measure (CUE)
e Good description of chaotic systems in condensed matter and black holes
e Obey a volume law S oc min( Ny, Ng).

(boundary)

e For the groundstate of a gapped local Hamiltonian — area law 5 oc N,

e Scaling laws of S also reveal phase transitions, a topological phase, etc Eisert
RMP 2010



Mixed-state entanglement

e Typically the state of a quantum system is ‘mixed’ due to an environment

Environment

X X X I X X X
A B

e We define the density matrix of the quantum computer

p = Tre(l¢) (¥])

e A and B are entangled iff
p# > pir} @ pf

e Entanglement entropies do not provide a complete description of mixed-state
entanglement.



Mixed-state entanglement via the PPT criterion and negativity

One approach (out of many): Peres-Horodecki PPT criterion:

Consider the partial-transpose operation

pP= Z Pindaisds lia: i8) Ua,jB| — Pr = Z Piniaisje Uas i8) (ia,JB|

iaJasiB.JB iaJasig.JB

If astate p=>_; p,-p(Ai) ® pg) is separable,

pl= Z p;[pg)]T ® pg) is positive semi-definite

]

The negativity € =108 ) \cqpec(,r) [Al is an entanglement monotone (Vidal, 2001)



Negativity reveals the entanglement structure of mixed quantum states

e Consider a Haar random reduced mixed state p on N = Ny + Ng + N¢ qubits

p = Trc(|¢) (¥])

e What is the average negativity as a function of the number of qubits N, Ng, N7
e Aubrun, Nechita, Shapourian, etc: There are three entanglement phases

a)

e This talk: How to detect such phases in an experiment?



Mixed-state entanglement from local randomized measurements



Mixed-state entanglement from local randomized measurements

e Joint work with A. Elben, R. Kueng, H-Y. Huang, R. van Bijnen, C. Kokail, M.

Dalmonte, P. Calabrese, B. Kraus, J. Preskill, P. Zoller [Phys. Rev. Lett. 125,
200501 (2020)]

e Our starting point: The randomized measurement toolbox

e Goal: Detect entanglement via the PPT condition in a qubit system

10



The randomized measurements toolbox

qubit 1 |0)—

qubit 2 |0)—— measure P,(s) = (s|upuf|s),
Circuit U=t - - Qupy, u € CUE.

o Randomized measurements: We

e We extract quantities of interest from
the statistics of Py(s).

qubit N |0)—— uy

e Unbiased analytical estimators and performance guarantees
o Nonlinear functions of p require typically oc 2V measurements
o See also impressive works by Andreas Ketterer, Lucas Knips, Otfried Giihne, et al

Review: The randomized measurement toolbox A. Elben, S. T. Flammia, H.-Y. Huang,
R. Kueng, J. Preskill, B. V, P. Zoller, arXiv:2203.11374 11



Experimental uses of randomized measurements

Entanglement Rényi entropy growth, Brydges et al, Science 2019

:
8
Topological entanglement entropy, . pltform Fidelities: Elben et al, PRL 2020,

Satzinger et al, Science 2021
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Zhu et al, arXiv:2107.11387

but also otocs, topological invariants, quantum Fisher information, etc 12



Measuring partial-transpose moments experimentally

o Consider the partial-transpose (PT) moments
r
pn="Tr[(p')"], n=2,...
e PT moments are experimentally accessible via local classical shadows (see also

Gray, PRL 2017, Zhou PRL 2020)

Classical shadows are built from bitstrings

qubit 1 |0)—
— GINTAGIIN, B
whic2 10— 0 = @ (3ul) (k7 uf = 17)  ERD]=p
Circuit i€cAB
PT moments are extracted from bitstrings
qubit N |0)——

A . A
B = n,(ﬂ) > [5G
’ n#n#...%#rm 13



The p3-PPT condition

Environment

X X X I X X X
A B

o Using the PPT condition: If 3\; < 0 € Spec(p") then A and B entangled.

e We propose the experimentally measurable p3-PPT condition

p3 — p; Z Ai( < 0 then A and B entangled.

14



Experimental demonstration

e Data from Brydges et al, Science 2019, reanalyzed.

c)

p3/ps

e Follow-ups conditions: Neven et al, NJP quantum info 2021, Yu et al, PRL 2021.
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e Can we distinguish different kinds of entanglement structure?
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Revealing entanglement structure via partial-tranpose moments

16



Revealing entanglement structure via partial-tranpose moments

e Joint work with M. Votto, J. Carrasco, V. Vitale, C. Kokail, P. Zoller, and B.
Kraus

e Can we use PT moments to experimentally probe an “entanglement phase
diagram”?

17




Introducing r»

e For a Haar random state made of Ny + Ng 4+ N¢ qubits, we obtain the average
PT moments of the reduced state p = trc(|¢) (¥]) (Lx = 2Vx)

1
E ~ L 0'+o7') Lc(a oT)

o We define an ‘averaged’ ratio 7

= _ Elp2lElps]
? Elpa]
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r, reveals the entanglement phase diagram of random states

e rp is quantized in the thermodynamic limit N — oo

a) 0.75 b) 0.75

N¢/N
N¢IN

Ent. saturation

Max. ent. Max. ent.
1.0 1.0
NA/NAB NA/NAB
]
0.8 1 1.2 14 0.8 1 1.2 1.4
P )

e Remark: How to do distinguish the Max-Ent Phase from the PPT phase?

19



r, for individual quantum states

e Statistical fluctuations vanish in the thermodynamical limit. Thus, we can study
ro = (p2p3)/pa for individual quantum states.

e ry probes the ‘shape’ of the spectrum of p', {\;}.

L (EaE )
? (kA

o In particular, A? = p3 implies r, = 1.

20



r, for individual quantum states

a ) Max. ent. phase, 7~ 1.1 b) PPT phase, i, ~1
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A very sensitive test of randomness

e Does r, make the difference between Haar random states and different states?

o First example: Clifford states generated by the n-qubit Clifford group (unitaries

that map Pauli operators to Pauli operators).

o Clifford states can be highly entangled, but they are classically simulatable
(Gottesman-Knill theorem)

22



A very sensitive test of randomness

e According to the ‘Bravy’ decomposition,
) = UaUgUc |0)%%]0)%% |0)¥°¢ |GHZ)“#"5¢ [EPR)“*4 |EPR)“* [EPR)“°5¢ |

which implies o =1

e This implies the entanglement saturation phase r» > 1 is not Clifford simulatable
a) 0.75 b) 0.75

NcIN
NcIN

Max. ent.

e We obtained similar conclusions for other classically simulatable states: fermionic
Gaussian states, Matrix-Product-States. 23



Summary - Outlook

e PT moments provide practical detection criteria for mixed-state entanglement
e They can also distinguish different types of entanglement.

e What is the behavior of r» for non-integrable topological ordered states? is it
different for an integrable model (toric code)?

e Can we simplify the experimental procedures to “test” Haar random states? eg
use polynomial functionals instead of a ratio, that we can be measured with

generalized swap tests.
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The p; negativity complements r,

We define the p3 negativity

&= Iog <p2 )
P3

e p3-PPT condition: £ > 0 implies
entanglement

e For Clifford states, &3 = £.

e The p3 ppt condition detects all

entangled states in the F A

thermodynamic limit! ' NalNs ' ' “New
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