Probing entanglement in quantum processors with the randomized measurements toolbox

Heidelberg

Benoît Vermersch
Jan 192024
LPMMC Grenoble

Outline

Entanglement versus quantum computers

The randomized measurement toolbox for measuring entanglement

A recent experiment with a quantum computer

Outline

Entanglement versus quantum computers

The randomized measurement toolbox for measuring entanglement

A recent experiment with a quantum computer

From classical to quantum computers in the quantum circuit model

Classical computers use classical bits

- One classical bit:
\rightarrow state in 0 or 1
- N classical bits:
$\rightarrow 2^{N}$ possibilities for the state (00...00, 00...01, etc)

Quantum computers use qubits

- One qubit:

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

- N qubits:

$|\psi\rangle=c_{0 \ldots 0}|0 \ldots 0\rangle+c_{0 \ldots 1}|0 \ldots 1\rangle+\ldots$. The quantum state can be simulatenously in all the 2^{N} classical states.

What is a quantum computer?

- The Sycamore chip (Image: Google AI)

- Any N-qubit state ($\operatorname{dim} 2^{N}$) can be created (Deutsch 1989).

$$
\begin{equation*}
|\psi\rangle=\sum_{s_{1}, \ldots, s_{N}} c_{s_{1}, \ldots, s_{N}}\left|s_{1}\right\rangle \otimes \cdots \otimes\left|s_{N}\right\rangle \tag{1}
\end{equation*}
$$

- Quantum algorithms are designed to solve classical problems or quantum problems

Why we may expect quantum speedup with quantum parallelism

- Unstructured search on a space of 2^{N} bitstrings: We look for x, such that $f\left(x=x_{1}, \ldots, x_{N}\right)=1$.
- Optimal classical algorithm: Random testing, with time complexity $O\left(2^{N}\right)$
- Optimal quantum algorithm: Grover's algorithm

- The first quantum gate creates a uniform quantum superposition of all 2^{N} bitstring states
- Complexity $O\left(\sqrt{2^{N}}\right)$: polynomial improvement.
- Note: Quantum parallelism does not guarantee quantum speedup for solving anything: One needs to extract relevant classical information from the quantum superposition state.

The measurement

- Every quantum circuits ends up with a measurement

that produces random output $s_{1}, \ldots, s_{N}\left(s_{i}=0,1\right)$ based on Born probabilities.

$$
\begin{equation*}
P\left(s_{1}, \ldots, s_{N}\right)=\left|\left\langle s_{1}, \ldots, s_{N} \mid \psi\right\rangle\right|^{2} \tag{2}
\end{equation*}
$$

- Efficient quantum algorithms are the ones that give the solution to your problem in this classical data.
- Measurement precision?: Analytical performance guarantees based on standard tools of statistical estimation (variance, confidence intervals...)

Noisy quantum computers

- Error propagation is typically exponential in size and time (Image: Google AI)

- Time is for benchmarks: check the 'quantum aspects' of a quantum computer
- Time is also for quantum simulation: understand a quantum problem using a quantum computer (ground-state physics, non-equilibrium problem, etc)

Entanglement

- Take two parts of a quantum system $A B$ (eg sets of qubits)

- A and B are entangled iff $|\psi\rangle \neq\left|\psi_{A}\right\rangle \otimes\left|\psi_{B}\right\rangle$
- Example with two qubits. The Bell state $|\psi\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|0\rangle+|1\rangle \otimes|1\rangle)$ is entangled

How to quantify entanglement?

$A \bullet \bullet \bullet \bullet \bullet \bullet \square$

- The reduced state of a quantum state in region A is defined by a density matrix

$$
\begin{equation*}
\rho_{A}=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|)=\sum_{s_{B}}\left\langle s_{B}\right||\psi\rangle\langle\psi|\left|s_{B}\right\rangle \tag{3}
\end{equation*}
$$

- For instance, with the Bell state

$$
\begin{equation*}
\rho_{A}=\frac{1}{2} \sum_{s_{B}=0,1}\left\langle s_{B}\right||00\rangle\langle 00|+|00\rangle\langle 11|+|11\rangle\langle 00|+|11\rangle\langle 11|\left|s_{B}\right\rangle=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|) \tag{4}
\end{equation*}
$$

- Entanglement means: ρ_{A} has more than one eigenvalue

Quantifying entanglement

- For pure states, entanglement entropies of the reduced state $\rho_{A}=\operatorname{Tr}_{B}(|\psi\rangle\langle\psi|)$ are entanglement measures

$$
\begin{align*}
S_{\mathrm{vN}} & =-\operatorname{Tr}\left[\rho_{A} \log \left(\rho_{A}\right)\right] \text { von Neumann Entropies } \\
S_{\alpha} & =\frac{1}{1-\alpha} \log \left[\operatorname{Tr}\left(\rho_{A}^{\alpha}\right)\right] \text { Rényi entropies } \tag{5}
\end{align*}
$$

Entanglement in quantum computing

Entanglement is the most important concept in quantum information theory:

- All quantum algorithms involve entangled states.
- Quantum algorithms with a 'low' level of entanglement can be efficiently simulated with a classical computer, i.e. they are 'useless' (Eisert RMP 2010).
- Decoherence $=$ Presence of entanglement with the environment.
- Distinguish many-body quantum phases in quantum simulation
- Essential for quantum metrology

Digression

- Entanglement in Heidelberg!

- Becher et al, PRL 2020. Fermi-Hubbard model with cold atoms

Outline

Entanglement versus quantum computers

The randomized measurement toolbox for measuring entanglement

A recent experiment with a quantum computer

A standard measurement sequence in a quantum computer

- Born rules (density matrix version): Bitstring s is measured with probability $\langle s| u \rho u^{\dagger}|s\rangle$
- High fidelity basis transformations $u=\bigotimes_{i} u_{i}$.
- This is repeated $N_{u} \times N_{M}$ times to obtain a classical dataset $s_{i_{u}, i_{M}}$.

How can we retrieve quantum information (about ρ) in the classical dataset?

In practice

- Trapped ions 'programmable quantum simulators' (Innsbruck, 2014-)
- from 1 to 100 qubits
- State almost pure $\rho \approx|\psi\rangle\langle\psi|$
- Measurement fidelity ~ 99.9\%
- 4 bitstrings per seconds \& experiments stable during hours \rightarrow dataset of $N_{u} N_{M} \approx 10^{5}$ bitstrings
- With superconducting qubits: $\sim 10^{3}$ faster, $N_{u} N_{M} \approx 10^{7}$

Take-home message: Quantum technologies = a unique opportunity to learn about quantum states!

One approach: Randomized measurements

- u_{i} chosen independently from the circular unitary ensemble (CUE)
- We extract quantities of interest from the statistics of $P_{u}(s)$, over random unitary transformations.
- First proposal (van Enk - Beenakker PRL 2012)
- With qubits (Elben et al, PRL 2019)

RM protocol for qubits (A. Elben, BV et al, PRL 2018)

qubit 1 qubit 2
qubit N

RM protocol for qubits (A. Elben, BV et al, PRL 2018)

$$
\operatorname{Tr}\left(\rho^{2}\right)=2^{N} E_{u}\left[\sum_{s, s^{\prime}}(-2)^{-D\left(s, s^{\prime}\right)} P_{u}(s) P_{u}\left(s^{\prime}\right)\right]
$$

- Analytical Proof: Random matrix theory (unitary n-designs).
- 'Cheap' postprocessing of the measurement data.
- Statistical errors \rightarrow 'large' required number of measurements $\sim 2^{N}$, but 'much smaller' than for quantum state tomography $\sim 4^{N}-8^{N}$.

Demonstration with a trapped ion quantum computer (Brydges et al, Science 2019)

- A programmable quantum simulator

- Goal: Understand entanglement growth in a quantum system

Demonstration with a trapped ion quantum computer (Brydges et al, Science 2019)

- Demonstration of randomized measurements with the measurement of the purity

RMs are now used routinely in the lab

- Measurement of the topological entanglement entropy (Satzinger et al, Science 2021)
- Cross-Platform verification of devices (A. Elben et al, PRL 2020) and (Zhu et al, 2021 preprint)
- [Theory] Classical shadows formalism (R. Huang et al, Nature Physics 2020)
- Experimental discovery of the p_{3}-PPT condition (A. Elben, R. Kueng et al, PRL 2020)
- Live measurements of the purity (Stricker et al, PRX quantum 2022)
- Extensions to cold atoms (Naldesi et al, PRL 2023)

Outline

Entanglement versus quantum computers
 The randomized measurement toolbox for measuring entanglement

A recent experiment with a quantum computer

Quantum Fisher information in quantum metrology

$$
\text { Pezze et al, RMP } 2018
$$

- Quantum Fisher information (QFI) for an Hermitian operator A

$$
\begin{equation*}
\left.F_{Q}=2 \sum_{(i, j), \lambda_{i}+\lambda_{j}>0} \frac{\left(\lambda_{i}-\lambda_{j}\right)^{2}}{\lambda_{i}+\lambda_{j}}|\langle i| A| j\right\rangle\left.\right|^{2} \text { with } \rho=\sum_{i} \lambda_{i}|i\rangle\langle i| \tag{6}
\end{equation*}
$$

- Certifies metrological power for parameter estimation
- Access to the entanglement depth in qubit systems

Fisher information in Heidelberg

- Strobel et al, Science 2014

Experimental measurements of the Quantum Fisher information

Vitale, Rath, Jurcevic (IBM), Branciard, Elben (Caltech), BV (arxiv:2307.16882, see also Rath et al PRL 2021)

- An experiment performed on the superconducting quantum computer IBMQ Montreal

Our measurement strategy

Post-processing

- Two datasets per batch measurements: calibration on the $|0\rangle^{\otimes N}$, actual measurement
- Several batches to keep track of drifts of measurement errors (it actually matters!)

Postprocessing: Data conversion

- We use 'robust classical shadows' (Chen et al, PRX 2021, improving the seminal Caltech paper: Nature Physics 2020)

$$
\begin{equation*}
\tilde{\rho}^{(r, b)}=\bigotimes_{j=1}^{N}\left(\frac{3}{2 F_{b}[j]-1} U_{j}^{(r)^{\dagger}}\left|s_{j}^{(r, b)}\right\rangle\left\langle s_{j}^{(r, b)}\right| U_{j}^{(r)}+\frac{F_{z}[j]-2}{2 F_{b}[j]-1} \mathbf{1}\right), \tag{7}
\end{equation*}
$$

where the calibration data of each batch b gives access to $F_{b}[j]$.

- Estimations of functions of ρ are built based on the relation $E\left[\tilde{\rho}^{(r, b)}\right]=\rho$

Experimental measurements

- GHZ state $|0\rangle^{\otimes N}+|1\rangle^{\otimes N}$ with expected QFI $F_{Q}=N^{2}$, offering optimal performance for quantum metrology, and showing genuine multipartite entanglement.

Conclusion and take-home questions

- Randomized measurement are used routinely to probe entanglement properties of quantum computers, and answer physics questions.
- Physics insights are essential to analyze the data, data analysis provide physics insight. . .
- Randommess is key (deterministic approaches are not possible), BUT there are ways to boost the efficiency using statistical tricks (common random numbers, importance sampling, etc) and physics assumptions (arxiv:2311.08108)

Review: The randomized measurement toolbox A. Elben, S. T. Flammia, H.-Y. Huang, R. Kueng, J. Preskill, B. V, P. Zoller, arXiv:2203.11374

