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Entanglement

• Take two parts of a quantum system A B (eg sets of qubits)

A B

• A and B are entangled iff |ψ〉 6= |ψA〉 ⊗ |ψB〉
• Example with two qubits. The Bell state

|ψ〉 = 1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) is entangled
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Entanglement in quantum computing

Entanglement is the most important concept in quantum

information theory:

• All quantum algorithms involve entangled states.

• Quantum algorithms with a ‘low’ level of entanglement can be

efficiently simulated with a classical computer.

• Universal predictions for large-scale quantum computers (eg

Nahum PRX 2017)
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How to quantify entanglement?

A B

• For pure states, entanglement entropies of the reduced state

ρA = TrB(|ψ〉 〈ψ|) are entanglement measures

SvN = −Tr[ρA log(ρA)] von Neumann Entropies

Sα =
1

1− α
log[Tr(ραA)] Rényi entropies (1)

• Entanglement entropies measure quantum resources &

quantum information (excellent notes from J. Preskill)

• Entanglement entropies distinguish quantum phases/dynamics

in quantum simulation (ex: RMP by J. Eisert)
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How to measure entanglement?

• The purity Tr(ρ2) can be used to detect entanglement.

• The second Rényi entropy S2 = − log2[Tr(ρ2)] quantifies

entanglement

How to measure the purity in an experiment? (if you cannot afford

Bell-state measurements ;) )
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One approach: Randomized measurements

|0〉

|0〉

...

|0〉

Circuit

u1

u2

uN

• Randomized measurements:

We measure

Pu(s) = 〈s|uρu†|s〉,
u = u1 ⊗ · · · ⊗ uN .

• ui chosen independently

from the circular unitary

ensemble (CUE)

• We extract quantities of

interest from the statistics

of Pu(s), over random

unitary transformations.
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Original protocol: van Enk-Beenakker (PRL 2012)

• Consider a single qubit

|0〉 Circuit u

• We evaluate the statistics of

Pu(s) = 〈s|uρu†|s〉 =
∑

m,n us,mρm,nu
∗
s,n

E [[Pu(s)]2] =
∑

m,n,m′,n′

ρm,nρm′,n′E [us,mu
∗
s,nus,m′u∗s,n′ ] (2)

• Using Random Matrix Theory (2-design identities)

[Pu(s)]2 =
1

6

∑
m,n,m′,n′

ρm,nρm′,n′
(
δm,nδm′,n′ + δm,n′δm′,n

)
=

1 + Tr(ρ2)

6
(3)
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RM protocol for qubits (A. Elben, BV et al, PRL 2018)

|0〉

|0〉

...

|0〉

Circuit

u1

u2

uN

• Protocol:

(i) apply independent

random single qubit

rotations

(ii) measure states

|s〉 = |s1, . . . , sN〉
(iii) Postprocess data

(D(s, s ′) is the Hamming

distance, number of

mismatchs between s and

s ′)

Tr(ρ2) = 2NEu

[∑
s,s′

(−2)−D(s,s′)Pu(s)Pu(s ′)
]

Rough measurement budget: 2N
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Demonstration with a trapped ion quantum computer (Brydges

et al, Science 2019)

• A programmable quantum

simulator

|0〉

|1〉

...

|0〉

e−iHXY t

u1

u2

u10

• Goal: Understand entanglement

growth in a quantum system
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Demonstration with a trapped ion quantum computer (Brydges

et al, Science 2019)

• Demonstration of randomized measurements with the

measurement of the purity
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RMs are now used routinely in the lab

• Topological entanglement entropy

(Satzinger et al, Science 2021)

• Cross-Platform verification (A.

Elben et al, PRL 2020) and (Zhu

et al, Nature Comm. 2023)

• The classical shadow formalism (H.

Huang et al, Nature Physics 2020)

• Experimental discovery of the

p3-PPT condition (A. Elben, R.

Kueng et al, PRL 2020), new

entropies are measured (Vitale,

Rath, et al 2021 2022)

• Live measurements of the purity

(Stricker et al, PRXQ 2022) 13



Some challenges for randomized measurements

• Review: Elben, Flammia, Kueng, Preskill, BV, Zoller, Nature

Review Physics 2022, is it the end?
• I dont think so, we still need

• A Methodology to access a given physical quantity, with a

more complicated form than the purity? Performance

guarantees? Systematic errors versus statistical errors?

• Practical feasibility of the RM toolbox in the many-body qubit

scenario: measurement errors accumulate, postprocessing time

explodes.

• Can we reduce the measurement effort by adding prior

knowledge?

• Entangling measurements? Symmetries? Fermions? (not this

talk, but check the review)

• Learning tasks based on RM data (this was Richard’s great

talk!)
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Outline

• Measurement of the Quantum Fisher information in a
quantum processor

• Theory: Rath, Branciard, Minguzzi, BV, Phys. Rev. Lett. 127,

260501

• Experiment: Rath, Vitale, Elben, Branciard, BV, IBM, in

preparation

• Boosting Randomized measurements via common random
numbers

• BV, Rath, Branciard, Sundar, Preskill, Elben, arxiv:2304.12292
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Shadows

|0〉

|0〉

...

|0〉

Circuit

u1

u2

uN

• Classical shadows (Huang et al, Nature Physics 2020)

ρ(r) =
⊗
i∈AB

(
3ui |k

(r)
i 〉 〈k

(r)
i | u

†
i − 1i

)
(4)

• For a single measurement, unbiased estimations of the density

matrix

E [ρ(r)] = ρ (5) 17



Shadows

• Classical shadows are very promising for observable

estimations (ex energy estimation in quantum simulation)

Tr(Oρ) = E [Tr(ρ(r)O)] (6)

• Provide access to ‘multi-copy observables’ (MCO)

Tr(Oρ⊗n) = E [Tr(Oρ(r1) ⊗ · · · ⊗ ρ(rn))] (7)
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Quantum Fisher information

• Quantum Fisher information (QFI) for an operator A

FQ = 2
∑

(i ,j),λi+λj>0

(λi − λj)2

λi + λj
| 〈i |A |j〉 |2 with ρ =

∑
i

λi |i〉 〈i |

(8)

• Certifies metrological power (Quantum Cramer Rao bound)

• Access to the entanglement depth

FQ >

⌊
N

k

⌋
k2 +

(
N −

⌊
N

k

⌋
k
)2 → depth ≥ k + 1 (9)

• Grows at quantum phase transitions (see eg Hauke et al,

Nature Physics 2016)
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Quantum Fisher information

• Rath et al (PRL 2021): QFI is the limit of a series of MCO,

i.e can be measured

Fn = 2Tr

( n∑
`=0

(ρ⊗1−1⊗ρ)2(1⊗1−ρ⊗1−1⊗ρ)`S(A⊗A)

)
(10)

• The series convergences exponentially faster to the QFI:

Example for noisy GHZ states (N = 10)
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Quantum Fisher information and MCO: Statistical Errors

• The series of MCO Fn is estimated via randomized

measurements

Fn = Tr(Oρ⊗n) = E [Tr(Oρ(r1) ⊗ · · · ⊗ ρ(rn))] (11)

• We provide analytical variance bounds (‘error bars’)

V[F̂n] ≤
n∑

k=1

n!22kN

k!(n − k)!2(M − k + 1)k
Tr
(
[Ok ]2

)
Ok =

1

n!

∑
π

Tr{k+1...n}(π
†Oπ[1⊗k ⊗ ρ⊗(n−k)]) (12)

• Expressions valid for any O: → can be used for variance

reductions techniques (see second part, with an example

which is the von Neumann entropy)
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Experimental measurements of the Quantum Fisher informa-

tion

• Device: IBMQ Montreal
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Our measurement strategy

Classical Shadows
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Full Experimental Protocol

Post-processing

• Two datasets per batch measurements: calibration on the

|0〉⊗N , actual measurement

• Several batches to keep track of drifts of measurement errors

(it actually matters!)
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Postprocessing

• We use robust classical shadows (Chen et al, PRX 2021)

under the assumption of local gate independent noise

ρ̃(r ,b) =
N⊗
j=1

(
3

2Fb[j ]− 1
U

(r)
j

†
|sj〉 〈sj |U

(r)
j +

Fz [j ]− 2

2Fb[j ]− 1
1

)
,

(13)

where the calibration data of each batch b gives access to

Fb[j ] = 1
2

∑
sj
〈sj |Λj ,b(|sj〉 〈sj |) |sj〉 . via direct postprocessing

of the qubit marginals probabilities.

• The calibration data can be also use to verity the assumption

of local noise.
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Postprocessing

• Standard shadow estimation:

Fn = Tr(Oρ⊗n) = E [Tr(Oρ(r1) ⊗ · · · ⊗ ρ(rn))] (14)

averaged over Mn outcomes, M ∼ 107−8 for N ∼ 12− 13 →
impossible.

• We have introduced batch shadow estimators (thanks

Richard), in Rath et al, PRXQ 2023. We build for each batch

b = 1, . . . , n′

ρ(b) =
n′

M

M/n′∑
r=1

ρ(b,r) (15)

• The asymptotic scalings of the variance are unchanged!

• Drawback: memory price 2N × 2N (To be discussed: maybe

machine-learning/tensor-network techniques can help

there. . . )
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Observation of Heisebberg scaling of the QFI

• The GHZ state |0〉⊗N + |1〉⊗N has Heisenberg scaling

FQ = N2, offering optimal performance for quantum

metrology, and showing genuine multipartite entanglement.

• Results for F0 and F1:
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Multipartite entanglement at a quantum critical point

• We prepare the GS of the transverse Ising model via QAOA

algorithm (open-loop)

2 4 6 8
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p=1
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• and observe the expected tradeoff as the depth p increases,

wbere the QAOO circuit becomes at the same time more

expressive and more subject to noise.
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Common Randomized Measurements

• The data acquisition/postprocessing of RM is state-agnostic

• How to incorporate prior knowledge σ, density matrix from

theory, in the framework, on order to reduce the measurement

effort.

• With Common Randomized measurements (CRM), this

information only enters during postprocessing by reducing

statistical fluctuation of randomized measurements!
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The two loops in randomized measurements

|0〉

|0〉

...

|0〉

Circuit

u1

u2

uN

• Standard scenario for

shadows: one measurement

for each of the NU random

unitaries

• It is more convenient to

repeat the protocol NM > 1

times per random unitary

• Trapped ions,

superconducting qubits

NM = 100/1000 is

considered ‘free’, also some

advantages in

postprocessing.
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Introducing CRM shadows

We define CRM shadows by adding a random component

parametrized by the theory density matrix

ρ̂(r)σ = ρ̂(r) − σ(r) + σ, (16)

where the term σ(r) is constructed from σ as

σ(r) =
∑
s

Pσ(s|U(r))M−1
(
U(r)† |s〉 〈s|U(r)

)
, (17)

• Pσ(s|U(r)) : expected Born probability for unitary U(r).

• M−1 : shadow channel inverse.

Insight: We reduce statistical fluctuations based on our prior

knowledge and we still have an unbiased estimation of ρ.
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Introducing CRM shadows

Theorem: For any multi-copy OA acting on NA qubits and n copies,

the variance of the estimator from CRM shadows is bounded by

V[Ô] ≤
n2||O(1)

A ||
2
2

NU

(
3NA ||ρA − σA||22 +

2NA

NM

)
+O

(
1

N2
U

)
, (18)

Proof: combines results on variances of multi-copy Os with

approaches from ‘muli-shot’ shadow estimations.

• The variance is guaranteed to be reduced compared to

standard shadows if ||ρA − σA||22 ≤ ||ρA||22, for any OA.

• There is a way to build σ from prior experiments with

shadows.
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Application: Central charge measurement

• For the ground state of H = −
∑N

i=1 ZiZi+1 + Xi , the von

Neumann entropy S(ρA) = −Tr(ρA log(ρA)) at half-cut has a

universal scaling ∼ c/12 log(NA) (Calabrese et al)

• Our idea: approximate S as polynomial function of the density

matrix Sn(ρ) =
∑

n≥1 anTr(ρ
n)

• Measure the multi-copy Sn(ρ) via CRM shadows, using σ built

from MPO
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Application: Central charge measurement

a)

c)b)

standard

CRM
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Conclusion

Many open questions about quantum experiments and random

datasets!
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