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Entanglement and randomized measurements

Measurement of the quantum Fisher information in a quantum
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Enhanced estimations of quantum state properties via common
randomized measurements



Entanglement and randomized measurements



Entanglement

e Take two parts of a quantum system A B (eg sets of qubits)

X X X I X X X
A B

o A and B are entangled iff [¢)) # [1a) ® |¢B)
e Example with two qubits. The Bell state
) = % (|0) ® [0) +]1) ® |1)) is entangled




Entanglement in quantum computing

Entanglement is the most important concept in quantum
information theory:

e All quantum algorithms involve entangled states.

e Quantum algorithms with a ‘low’ level of entanglement can be
efficiently simulated with a classical computer.

e Universal predictions for large-scale quantum computers (eg
Nahum PRX 2017)



How to quantify entanglement?
X X X I X X N
A B

e For pure states, entanglement entropies of the reduced state

pa = Tre(|v) (¥|) are entanglement measures

Sy = —Tr[palog(pa)] von Neumann Entropies

1
Sa = 1 log[Tr(pa)] Rényi entropies (1)
—

e Entanglement entropies measure quantum resources &
quantum information (excellent notes from J. Preskill)

e Entanglement entropies distinguish quantum phases/dynamics
in quantum simulation (ex: RMP by J. Eisert)



How to measure entanglement?

o The purity Tr(p?) can be used to detect entanglement.

e The second Rényi entropy S, = — log,[Tr(p?)] quantifies
entanglement

How to measure the purity in an experiment? (if you cannot afford
Bell-state measurements ;) )



One approach: Randomized measurements

e Randomized measurements:

10) ur A We measure
Pu(s) = (s|upu]s),

o—
Circuit e u; chosen independently

from the circular unitary
ensemble (CUE)

|0)——— uy A o We extract quantities of

interest from the statistics
of P,(s), over random

unitary transformations.



Original protocol: van Enk-Beenakker (PRL 2012)

e Consider a single qubit

)

o We evaluate the statistics of
Pu(s) = (slupulls) =3, , Us.mpm.nti,

EMPU(S)IT = D pmnpurt w Elts,mtil pus s ] (2)

/ /
m,n,m’.n

e Using Random Matrix Theory (2-design identities)

— 1
[PU(S)]2 = 6 Z Pm,nPm’ n’ (5m,n5m/,n/ + 5m,n/5m/,n)

/ /
m,n,m’,n

1+ Tr(p?)
=6 ()



RM protocol for qubits (A. Elben, BV et al, PRL 2018)

e Protocol:

0} —] U A (i) apply independent
random single qubit

] U rotations
% Circuit (ii) measure states
_| : |s) = |s1,...,5n)
' (iii) Postprocess data
10)——| uy | A (D(s,s’) is the Hamming
distance, number of

mismatchs between s and

s')

Tr(p?) = 2VE,[ Y (=2) PP, (s)Pu(s")]

s,s’

Rough measurement budget: 2N 10



Demonstration with a trapped ion quantum computer (Brydges

et al, Science 2019)

e A programmable quantum

simulator
0)— i — A
1)— &
e—iny t
A~ 700 nm
ADC +
2 |0)— uio A
P‘IZ TR 1.1 8
— W=
Qubit/
seudo-spin,
Quantum state % aumsie — ® Goal: Understand entanglement
detection manipulation
(0:) 8 —— = growth in a quantum system
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Demonstration with a trapped ion quantum computer (Brydges

et al, Science 2019)

o Demonstration of randomized measurements with the
measurement of the purity
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RMs are now used routinely in the lab

o Topological entanglement entropy
(Satzinger et al, Science 2021)

e Cross-Platform verification (A.
Elben et al, PRL 2020) and (Zhu
et al, Nature Comm. 2023)

e The classical shadow formalism (H.
Huang et al, Nature Physics 2020)

o Experimental discovery of the
p3-PPT condition (A. Elben, R.
Kueng et al, PRL 2020), new
entropies are measured (Vitale,
Rath, et al 2021 2022)

o Live measurements of the purity
(Stricker et al, PRXQ 2022) 13



Some challenges for randomized measurements

e Review: Elben, Flammia, Kueng, Preskill, BV, Zoller, Nature
Review Physics 2022, is it the end?
e | dont think so, we still need

e A Methodology to access a given physical quantity, with a
more complicated form than the purity? Performance
guarantees? Systematic errors versus statistical errors?

e Practical feasibility of the RM toolbox in the many-body qubit
scenario: measurement errors accumulate, postprocessing time
explodes.

e Can we reduce the measurement effort by adding prior
knowledge?

e Entangling measurements? Symmetries? Fermions? (not this
talk, but check the review)

e Learning tasks based on RM data (this was Richard's great
talk!)
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e Measurement of the Quantum Fisher information in a
quantum processor
e Theory: Rath, Branciard, Minguzzi, BV, Phys. Rev. Lett. 127,
260501
e Experiment: Rath, Vitale, Elben, Branciard, BV, IBM, in
preparation

e Boosting Randomized measurements via common random
numbers

e BV, Rath, Branciard, Sundar, Preskill, Elben, arxiv:2304.12292
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Measurement of the quantum Fisher information in a quantum
processor
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Circuit

e Classical shadows (Huang et al, Nature Physics 2020)
P = & (3 K7y (Kl - 17) (4)
i€AB
e For a single measurement, unbiased estimations of the density
matrix

Elp" =p (5) 17



e Classical shadows are very promising for observable
estimations (ex energy estimation in quantum simulation)

Tr(0p) = E[Tx(p\" 0)] (6)
e Provide access to ‘multi-copy observables’ (MCO)

Tr(0p®") = E[Tr(0p™ @ - -+ @ pl™))] (7)
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Quantum Fisher information

e Quantum Fisher information (QFI) for an operator A

(A = A)?
Fo=2 Y,  S—(AL)] Wlthp—ZM

(i) Xi+2>0 Ai
(8)
o Certifies metrological power (Quantum Cramer Rao bound)

e Access to the entanglement depth

N N
Fo > L{J K2+ (N — {kJ k)2 — depth > k+1 (9)

e Grows at quantum phase transitions (see eg Hauke et al,
Nature Physics 2016)
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Quantum Fisher information

e Rath et al (PRL 2021): QFl is the limit of a series of MCO,
i.e can be measured

Fn,= 2Tr<zn:(p@)l—1®p)2(1®1—p®1—1®p)€S(A®A)>
=0
(10)

e The series convergences exponentially faster to the QFI:
Example for noisy GHZ states (N = 10)

(a) —e— (.1 —e— (.5
100 | D o3 0.75
S =
= 50 -

0
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Quantum Fisher information and MCQ: Statistical Errors

e The series of MCO F,, is estimated via randomized
measurements

Fo = To(0p"") = E[To(0p™M @ o) (11)

e We provide analytical variance bounds (‘error bars’)

n!22kN

VIR < ; = oem—kroF IO

1 -
Ok = o Z Trikr1..np (7T On[1%F @ pP7h))(12)

o Expressions valid for any O: — can be used for variance
reductions techniques (see second part, with an example
which is the von Neumann entropy)

21



Experimental measurements of the Quantum Fisher informa-

tion

e Device: IBMQ Montreal

ment error
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Our measurement strategy

Full Experimental Protocol o

Post-processing

e Two datasets per batch measurements: calibration on the
10Y®N | actual measurement

e Several batches to keep track of drifts of measurement errors
(it actually matters!)
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Postprocessing

e We use robust classical shadows (Chen et al, PRX 2021)
under the assumption of local gate independent noise

N .
~(r,b) _ 3 ot Ty, =2 >
' §)<2F -1 e R )
(13)
where the calibration data of each batch b gives access to
Fulj] = %Zsj (sil A (Isj) (sjl) |sj) - via direct postprocessing
of the qubit marginals probabilities.

e The calibration data can be also use to verity the assumption

of local noise.
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Postprocessing

e Standard shadow estimation:
Fp="Tr(0p"") = E[Tr(0p @ --- @ p(™))]  (14)

averaged over M" outcomes, M ~ 10778 for N ~ 12 — 13 —
impossible.

e We have introduced batch shadow estimators (thanks
Richard), in Rath et al, PRXQ 2023. We build for each batch

b=1,....n
, M/’

n r
plb) = i Z pn) (15)
r=1

e The asymptotic scalings of the variance are unchanged!
o Drawback: memory price 2V x 2V (To be discussed: maybe
machine-learning/tensor-network techniques can help

there...)
25



Observation of Heisebberg scaling of the QFI

o The GHZ state [0)*" + [1)®" has Heisenberg scaling
Fo = N2, offering optimal performance for quantum
metrology, and showing genuine multipartite entanglement.

e Results for Fy and Fq:

{d) 150

¥ classical

¥  robust
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Multipartite entanglement at a quantum critical point

o We prepare the GS of the transverse Ising model via QAOA

algorithm (open-loop)

Exact QFI

# qubits

e and observe the expected tradeoff as the depth p increases,
wbere the QAOO circuit becomes at the same time more

expressive and more subject to noise.
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Enhanced estimations of quantum state properties via common
randomized measurements
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Common Randomized Measurements

e The data acquisition/postprocessing of RM is state-agnostic

e How to incorporate prior knowledge o, density matrix from
theory, in the framework, on order to reduce the measurement
effort.

e With Common Randomized measurements (CRM), this
information only enters during postprocessing by reducing
statistical fluctuation of randomized measurements!
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The two loops in randomized measurements

e Standard scenario for
shadows: one measurement

0)——] up A for each of the Ny random
unitaries
It is more convenient to
o— :
Circuit repeat the protocol Ny, > 1

| : times per random unitary

- e Trapped ions,

|0)— uy A superconducting qubits
Ny, = 100/1000 is
considered ‘free’, also some

advantages in
postprocessing.

30



Introducing CRM shadows

We define CRM shadows by adding a random component
parametrized by the theory density matrix

) =p) — () 4 g, (16)
where the term (") is constructed from o as

o — Z PJ(S\U(r))Mfl (U(r)T |s) (s] U(f)> : (17)

o P,(s|U(") : expected Born probability for unitary U(").
o M~ : shadow channel inverse.
Insight: We reduce statistical fluctuations based on our prior
knowledge and we still have an unbiased estimation of p.
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Introducing CRM shadows

Theorem: For any multi-copy O acting on Ny qubits and n copies,
the variance of the estimator from CRM shadows is bounded by

R 2 O(l) 2 2N 1
o] < "Nl (3w oz 220) o), (8)
Ny Ny

Proof: combines results on variances of multi-copy Os with
approaches from ‘muli-shot’ shadow estimations.

e The variance is guaranteed to be reduced compared to
standard shadows if [|pa — oa||3 < ||pal|3, for any Oa.

e There is a way to build o from prior experiments with

shadows.
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Application: Central charge measurement

e For the ground state of H = — Z,N:l ZiZiy1 + X;, the von
Neumann entropy S(pa) = —Tr(palog(pa)) at half-cut has a
universal scaling ~ ¢/12log(N,) (Calabrese et al)

e Our idea: approximate S as polynomial function of the density
matrix Sp(p) = >_,>1 anTr(p")

e Measure the multi-copy S,(p) via CRM shadows, using o built
from MPQO
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Application: Central charge measurement

a) 0.6 1
05
o504
0.3 1
b) r—
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Conclusion

Many open questions about quantum experiments and random
datasets!
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