Recent progress in the development of the randomized measurement toolbox

Online seminar at Tsinghua's university

Benoît Vermersch

October 12 2022

LPMMC Grenoble & IQOQI Innsbruck

The randomized measurement toolbox for measuring entanglement

Extending the system sizes via importance sampling

Measuring new quantities

• Take two parts of a quantum system A B (eg sets of qubits)

- A and B are entangled iff $|\psi
 angle
 eq |\psi_A
 angle \otimes |\psi_B
 angle$
- Example with two qubits. The Bell state $|\psi\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$ is entangled

How to quantify entanglement?

For pure states, entanglement entropies of the reduced state $\rho_A = \text{Tr}_B(|\psi\rangle \langle \psi|)$ are entanglement measures

$$S_{\rm vN} = -\text{Tr}[\rho_A \log(\rho_A)] \text{ von Neumann Entropies}$$

$$S_\alpha = \frac{1}{1-\alpha} \log[\text{Tr}(\rho_A^\alpha)] \text{ Rényi entropies}$$
(1)

For groundstates of condensed matter systems, we expect an area law $S_{
m vN} \propto N_A^{
m (boundary)}$

Eisert RMP 2010

Entanglement scalings indicate phase transitions, a topological phase, etc

Luiz et al, PRB 2015

Entanglement in noisy quantum computers

• Typically the state of a quantum computer is 'mixed' due to an environment

• We define the density matrix of the quantum computer

$$\rho_{AB} = \operatorname{Tr}_{E}(|\psi\rangle \langle \psi|) \tag{2}$$

• A and B are entangled iff

$$\rho_{AB} \neq \sum_{i} p_{i} \rho_{A}^{(i)} \otimes \rho_{B}^{(i)}$$
(3)

How to detect entanglement?

Environment

- Purity ${
 m Tr}(
 ho^2)$ (= 1 iff the state is pure $ho=\ket{\psi}ra{\psi}$)
- Purity entanglement condition (Horodecki 1996)

 $\operatorname{Tr}(
ho_A^2) < \operatorname{Tr}(
ho_{AB}^2) \implies A ext{ and } B ext{ are entangled}$

• Example Bell State $|\psi
angle=rac{1}{\sqrt{2}}(|00
angle+|11
angle)\,|0_{E}
angle$

$$\rho_{AB} = \frac{1}{2} (|00\rangle + |11\rangle) (\langle 00| + \langle 11|) \implies \operatorname{Tr}(\rho_{AB}^2) = 1$$

$$\rho_A = \frac{1}{2} (|0\rangle \langle 0| + |1\rangle \langle 1|) \implies \operatorname{Tr}(\rho_A^2) = 1/2$$
(5)

(4)

- The purity $Tr(\rho^2)$ can be used to detect entanglement.
- The second Rényi entropy $S_2 = -\log_2[Tr(\rho^2)]$ quantifies entanglement in quantum computers, in particular in the context of quantum simulation.

How to measure the purity in an experiment?

The randomized measurement toolbox for measuring entanglement

Extending the system sizes via importance sampling

Measuring new quantities

A standard measurement sequence in a quantum computer

• Quantum measurements: the state $|s\rangle$ is measured with probability $\langle s|\rho|s\rangle,$ in a certain measurement basis

We have access to observables of the type $O |s\rangle = O(s) |s\rangle$.

$$\langle O \rangle = \sum_{s} \langle s | \rho | s \rangle O(s)$$
 (6)

 Measurement in the 3^N combinations of X, Y, Z basis, I can realize state tomography, i.e measure ρ.

• Can I measure the purity $Tr(\rho^2)$ more directly?

- Randomized measurements: We measure $P_u(s) = \langle s | u \rho u^{\dagger} | s \rangle$, $u = u_1 \otimes \cdots \otimes u_N$.
- We extract quantities of interest from the statistics of P_u(s), over random unitary transformations.

Original protocol: van Enk-Beenakker (PRL 2012)

• Consider a single qubit

qubit 1
$$|0\rangle$$
 Circuit u

We measure the statistics of $P_u(s) = \langle s | u \rho u^{\dagger} | s \rangle$.

- Extreme case 1: The state is pure with $\operatorname{Tr}(\rho^2) = 1$, eg $\rho = |0\rangle \langle 0|$, then $P_u(s) = |\langle s|u|0\rangle|^2$ fluctuates in [0, 1].
- Extreme case 2: The state is fully mixed with $Tr(\rho^2) = 1/2$, $\rho = 1/2$, then $P_u(s) = 1/2$ does not fluctuate.
- Using the properties of the circular unitary ensemble (CUE)

$$(\operatorname{Tr}(\rho_A^2) - 1/2) \propto \operatorname{Var}_u[P_u(s)^2])$$
(7)

RM protocol for qubits (A. Elben, BV et al, PRL 2018)

- Protocol:
 - (i) apply independent random single qubit rotations (ii) measure states $|s\rangle = |s_1, \dots, s_N\rangle$
 - (iii) Postprocess data (D(s, s') is the Hamming distance, number of mismatchs between s and s')

$$\mathrm{Tr}(\rho^2) = 2^N E_u \left[\sum_{s,s'} (-2)^{-D(s,s')} P_u(s) P_u(s') \right]$$

RM protocol for qubits (A. Elben, BV et al, PRL 2018)

$$\mathrm{Tr}(\rho^2) = 2^N E_u \left[\sum_{s,s'} (-2)^{-D(s,s')} P_u(s) P_u(s') \right]$$

- Proof: Random matrix theory and replica tricks.
- State-agnostic estimation without reconstructing the state
- Cheap postprocessing of the measurement data (ie no fitting, etc)
- Info on the unitaries does not appear in the formula \rightarrow estimations are *robust*.
- Statistical errors \rightarrow large required number of measurements $\sim 2^N$, but much smaller than for quantum state tomography $\sim 4^N$.

RMs are now used routinely in the lab

- Entropy measurements of up to 10 qubits (Brydges et al, Science 2019)
- Measurement of the topological entanglement entropy (Satzinger et al, Science 2021)
- Cross-Platform verification of devices (A. Elben, BV et al, PRL 2020) and (Zhu et al, 2021 preprint)

How can we improve the randomized measurement toolbox?

The randomized measurement toolbox for measuring entanglement

Extending the system sizes via importance sampling

Measuring new quantities

Statistical errors in RM protocols

- Main challenge for RM: statistical errors, with two crucial parameters who scale exponentially with system size
 - N_u number of applied unitaries
 - N_M number of measurement for each unitary

- Access to ~ 15 qubits, assumption free, cost in postprocessing: few seconds.

Importance sampling for probing entanglement

- Work with A. Rath, A. Elben, R. van Bijnen, and P. Zoller (Phys. Rev. Lett. 2021)
- Our goal: reduce the required $N_U N_M$ exponentially (in particular N_u) \rightarrow access to 30-35 qubits.
- Why? Access universal regimes for entanglement: scaling laws, central charge, topological entropy, etc Assess fundamental limits about measurements
- Our idea:
 - Importance Sampling: we use/learn information about the state before we measure
 - We *still* have unbiased estimators, i.e assumption-free, and cheap data postprocesing). We simply boost the convergence w.r.t statistical errors.

Importance sampling for probing entanglement: The basic idea

• Interpet RM as the evaluation of an integral

$$\operatorname{Tr}(\rho^2) = 2^N \int du \left[\sum_{s,s'} (-2)^{-D(s,s')} P_u(s) P_u(s') \right]$$

• Consider a 'well-chosen' probability distribution, instead of the uniform one

$$\operatorname{Tr}(\rho^2) = 2^N \int p_{\mathrm{IS}}(u) du \left[\frac{\sum_{s,s'} (-2)^{-D(s,s')} P_u(s) P_u(s')}{p_{\mathrm{IS}}(u)} \right]$$

- The unitaries u are sampled according to p_{IS}(u), this will change the convergence properties of the integral evaluation with finite number of samples, i.e measurements.
- Data acquisition and postprocessing task remain unchanged.

Importance sampling for probing entanglement: A concrete example

- Instead of the ideal pure *N*-qubit GHZ state $|\psi\rangle = (|0\rangle^{\otimes N} + |1\rangle^{\otimes N})/\sqrt{2}$, we realize a mixed-state version ρ of $|\psi\rangle$.
- To measure the purity of ρ , define the importance sampler

$$p_{\rm IS}(u) = 2^N \left[\sum_{s,s'} (-2)^{-D(s,s')} P_u^{(\psi)}(s) P_u^{(\psi)}(s') \right]$$
(8)

• Sample N_u unitaries according to $p_{\text{IS}}(u)$ and estimate

$$[\mathrm{Tr}(\rho^2)]_e = \frac{1}{N_u} \sum_{u} \left[\frac{\sum_{s,s'} (-2)^{-D(s,s')} P_u(s) P_u(s')}{p_{\mathrm{IS}}(u)} \right]$$
(9)

• As $ho pprox |\psi\rangle \langle \psi|$, the integrand has been 'flattened' ightarrow small statistical fluctations

The full protocol

Performances

Example: 10 *qubit* many-body entangled

- \rightarrow Exponential reduction of the number of measurements, with $N_u = O(1)$.
- \rightarrow Better approximations lead to better performances
- Also tested on topological entropy of 2D topological ground states.
- Tutorial and python scripts: https://github.com/bvermersch/RandomMeas

The randomized measurement toolbox for measuring entanglement

Extending the system sizes via importance sampling

Measuring new quantities

- Measurement of the Quantum Fisher information: Rath, Branciard, Minguzzi, Vermersch, Phys. Rev. Lett 2021
- Observation of the Entanglement barrier: Rath, Murciano, Vitale, Votto, Kueng, Dubail, Branciard, Calabrese, Vermersch, arXiv:2209.04393.

Measuring new quantities

 Important upgrade to the toolbox: Classical shadows (Huang et al, Nature Physics 2020)

$$\rho^{(r)} = \bigotimes_{i \in AB} \left(3u_i \ket{k_i^{(r)}} \bra{k_i^{(r)}} u_i^{\dagger} - \mathbf{1}_i \right)$$
(10)

• For a single measurement, unbiased estimations of the density matrix

$$E[\rho^{(r)}] = \rho \tag{11}$$

• Classical shadows provide access to 'multi-copy observables' (MCO)

$$\operatorname{Tr}(O\rho^{\otimes n}) = E[\operatorname{Tr}(O\rho^{(r_1)} \otimes \cdots \otimes \rho^{(r_n)})]$$
(12)

- Examples: Rényi entropies, Partial-Transpose moments (Elben et al, PRL 2020), Symmetry-resolved entropies (Vitale et al, Sci Post 2021), etc
- Can I write/measure a given physical quantity as MCO? What is the cost in terms of statistical errors? postprocessing?

Quantum Fisher information

• Quantum Fisher information (QFI)

$$F_Q = 2 \sum_{(i,j),\lambda_i+\lambda_j>0} \frac{(\lambda_i - \lambda_j)^2}{\lambda_i + \lambda_j} |\langle i| A |j \rangle|^2 \text{ with } \rho = \sum_i \lambda_i |i \rangle \langle i| \qquad (13)$$

- Certifies metrological power and entanglement depth (how many particles are entangled)
- Rath et al (PRL 2021): QFI is the limit of a series of MCO, i.e can be measured!

$$F_n = 2 \operatorname{Tr} \bigg(\sum_{\ell=0}^n (\rho \otimes \mathbf{1} - \mathbf{1} \otimes \rho)^2 (\mathbf{1} \otimes \mathbf{1} - \rho \otimes \mathbf{1} - \mathbf{1} \otimes \rho)^\ell \mathbf{S}(A \otimes A) \bigg).$$
(14)

Quantum Fisher information and MCO: Statistical Errors

• The series of MCO *F_n* converges to QFI, and is estimated via randomized measurements

$$F_n = \operatorname{Tr}(O\rho^{\otimes n}) = E[\operatorname{Tr}(O\rho^{(r_1)} \otimes \cdots \otimes \rho^{(r_n)})]$$
(15)

- What is the cost in measurements of a MCO O as a function of the order n?
- Typical number of measurement (error ϵ , confidence δ)

$$M \ge \max_{1 \le k \le n} \left\{ \left(\frac{n \, n!^2}{k! (n-k)!^2} \frac{\operatorname{tr}([O_k]^2)}{\epsilon^2 \delta} \right)^{\frac{1}{k}} 2^N + k - 1 \right\}.$$
(16)

$$O_k = \frac{1}{q!} \sum_{\pi} \operatorname{Tr}_{\{k+1\dots n\}}(\pi^{\dagger} O \pi [\mathbf{1}^{\otimes k} \otimes \rho^{\otimes (n-k)}])$$
(17)

Quantum Fisher information and MCO: Illustrations

• Illustration with a noisy GHZ state (depolarization noise p)

Quantum Fisher information and MCO: final remarks

- Complicated quantities such as QFI can be expressed as MCO and measured with a known measurement budget (!)
- The relation between the order *n* and the number of measurements *M* illustrates a tradeoff between the information given by a quantity w.r.t the cost to measure it!
- The measurement is not the only important aspect to take into account:
 - Postprocessing matters E [Tr(Oρ^(r₁) ⊗···⊗ ρ^(r_n))] supposes to evaluate O(Mⁿ) terms
 - This can be avoided using 'batch classical shadows', arXiv:2209.04393, without altering statistical performances.

- Randomized measurements are an active field of research: experimentally friendly with plenty of non-trivial questions on the theory side
- Review: *The randomized measurement toolbox* A. Elben, S. T. Flammia, H.-Y. Huang, R. Kueng, J. Preskill, B. V, P. Zoller, arXiv:2203.11374

