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Entanglement

• Take two parts of a quantum system A B (eg sets of qubits)

A B

• A and B are entangled iff |ψ〉 6= |ψA〉 ⊗ |ψB〉
• Example with two qubits. The Bell state |ψ〉 = 1√

2
(|00〉+ |11〉) is entangled
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How to quantify entanglement?

A B

For pure states, entanglement entropies of the reduced state ρA = TrB(|ψ〉 〈ψ|) are

entanglement measures

SvN = −Tr[ρA log(ρA)] von Neumann Entropies

Sα =
1

1− α log[Tr(ραA)] Rényi entropies (1)

4



Why should I care about entanglement scaling?

For groundstates of condensed matter

systems, we expect an area law

SvN ∝ N
(boundary)
A

Eisert RMP 2010

Entanglement scalings indicate phase

transitions, a topological phase, etc

Luiz et al, PRB 2015
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Entanglement in noisy quantum computers

• Typically the state of a quantum computer is ‘mixed’ due to an environment

A B

Environment

• We define the density matrix of the quantum computer

ρAB = TrE (|ψ〉 〈ψ|) (2)

• A and B are entangled iff

ρAB 6=
∑
i

piρ
(i)
A ⊗ ρ

(i)
B (3)
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How to detect entanglement?

A B

Environment

• Purity Tr(ρ2) (= 1 iff the state is pure ρ = |ψ〉 〈ψ|)
• Purity entanglement condition (Horodecki 1996)

Tr(ρ2A) < Tr(ρ2AB) =⇒ A and B are entangled (4)

• Example Bell State |ψ〉 = 1√
2

(|00〉+ |11〉) |0E 〉

ρAB =
1

2
(|00〉+ |11〉)(〈00|+ 〈11|) =⇒ Tr(ρ2AB) = 1

ρA =
1

2
(|0〉 〈0|+ |1〉 〈1|) =⇒ Tr(ρ2A) = 1/2 (5)
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How to measure entanglement?

• The purity Tr(ρ2) can be used to detect entanglement.

• The second Rényi entropy S2 = − log2[Tr(ρ2)] quantifies entanglement in

quantum computers, in particular in the context of quantum simulation.

How to measure the purity in an experiment?
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A standard measurement sequence in a quantum computer

qubit 1 |0〉

qubit 2 |0〉

...
...

qubit N |0〉

Circuit

• Quantum measurements: the state |s〉 is measured

with probability 〈s|ρ|s〉, in a certain measurement

basis

• We have access to observables of the type

O |s〉 = O(s) |s〉.

〈O〉 =
∑
s

〈s|ρ|s〉O(s) (6)

• Measurement in the 3N combinations of X , Y , Z

basis, I can realize state tomography, i.e measure ρ.

• Can I measure the purity Tr(ρ2) more directly?
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One approach: Randomized measurements

qubit 1 |0〉

qubit 2 |0〉

...
...

qubit N |0〉

Circuit

u1

u2

uN

• Randomized measurements: We

measure Pu(s) = 〈s|uρu†|s〉,
u = u1 ⊗ · · · ⊗ uN .

• We extract quantities of interest from

the statistics of Pu(s), over random

unitary transformations.
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Original protocol: van Enk-Beenakker (PRL 2012)

• Consider a single qubit

qubit 1 |0〉 Circuit u

We measure the statistics of Pu(s) = 〈s|uρu†|s〉.
• Extreme case 1: The state is pure with Tr(ρ2) = 1, eg ρ = |0〉 〈0|, then

Pu(s) = | 〈s|u|0〉 |2 fluctuates in [0, 1].

• Extreme case 2: The state is fully mixed with Tr(ρ2) = 1/2, ρ = 1/2, then

Pu(s) = 1/2 does not fluctuate.

• Using the properties of the circular unitary ensemble (CUE)

(Tr(ρ2A)− 1/2) ∝ Varu[Pu(s)2]) (7)
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RM protocol for qubits (A. Elben, BV et al, PRL 2018)

qubit 1 |0〉

qubit 2 |0〉

...
...

qubit N |0〉

Circuit

u1

u2

uN

• Protocol:

(i) apply independent random single

qubit rotations

(ii) measure states |s〉 = |s1, . . . , sN〉
(iii) Postprocess data (D(s, s ′) is the

Hamming distance, number of

mismatchs between s and s ′)

Tr(ρ2) = 2NEu

[∑
s,s′

(−2)−D(s,s′)Pu(s)Pu(s ′)
]
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RM protocol for qubits (A. Elben, BV et al, PRL 2018)

Tr(ρ2) = 2NEu

[∑
s,s′

(−2)−D(s,s′)Pu(s)Pu(s ′)
]

• Proof: Random matrix theory and replica tricks.

• State-agnostic estimation without reconstructing the state

• Cheap postprocessing of the measurement data (ie no fitting, etc)

• Info on the unitaries does not appear in the formula → estimations are robust.

• Statistical errors → large required number of measurements ∼ 2N , but much

smaller than for quantum state tomography ∼ 4N .
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RMs are now used routinely in the lab

• Entropy measurements of up to 10 qubits

(Brydges et al, Science 2019)

• Measurement of the topological entanglement

entropy (Satzinger et al, Science 2021)

• Cross-Platform verification of devices (A.

Elben, BV et al, PRL 2020) and (Zhu et al,

2021 preprint)

How can we improve the randomized measurement toolbox?
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Statistical errors in RM protocols

• Main challenge for RM: statistical errors, with two crucial parameters who scale
exponentially with system size

• Nu number of applied unitaries

• NM number of measurement for each unitary

2 4 6 8 10
NA

103

104

N
U
N

M

Pure product state

Pure random state

Half part. of pure random state

2a+bNA

a = 7.7 ± 0.3, b = 0.8 ± 0.1

a = 8.1 ± 0.2, b = 0.4 ± 0.1

a = 6.8 ± 0.1, b = 1.4 ± 0.1

• Access to ∼ 15 qubits, assumption free, cost in postprocessing: few seconds.
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Importance sampling for probing entanglement

• Work with A. Rath, A. Elben, R. van Bijnen, and P. Zoller (Phys. Rev. Lett.

2021)

• Our goal: reduce the required NUNM exponentially (in particular Nu) → access to

30− 35 qubits.

• Why? Access universal regimes for entanglement: scaling laws, central charge,

topological entropy, etc - Assess fundamental limits about measurements

• Our idea:

• Importance Sampling: we use/learn information about the state before we measure

• We still have unbiased estimators, i.e assumption-free, and cheap data

postprocesing). We simply boost the convergence w.r.t statistical errors.
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Importance sampling for probing entanglement: The basic idea

• Interpet RM as the evaluation of an integral

Tr(ρ2) = 2N
∫

du

∑
s,s′

(−2)−D(s,s′)Pu(s)Pu(s ′)


• Consider a ‘well-chosen’ probability distribution, instead of the uniform one

Tr(ρ2) = 2N
∫

pIS(u)du

[∑
s,s′(−2)−D(s,s′)Pu(s)Pu(s ′)

pIS(u)

]
• The unitaries u are sampled according to pIS(u), this will change the convergence

properties of the integral evaluation with finite number of samples, i.e

measurements.

• Data acquisition and postprocessing task remain unchanged.
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Importance sampling for probing entanglement: A concrete example

• Instead of the ideal pure N-qubit GHZ state |ψ〉 = (|0〉⊗N + |1〉⊗N)/
√

2, we

realize a mixed-state version ρ of |ψ〉.
• To measure the purity of ρ, define the importance sampler

pIS(u) = 2N

∑
s,s′

(−2)−D(s,s′)P
(ψ)
u (s)P

(ψ)
u (s ′)

 (8)

• Sample Nu unitaries according to pIS(u) and estimate

[Tr(ρ2)]e =
1

Nu

∑
u

[∑
s,s′(−2)−D(s,s′)Pu(s)Pu(s ′)

pIS(u)

]
(9)

• As ρ ≈ |ψ〉 〈ψ|, the integrand has been ‘flattened’ → small statistical fluctations
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The full protocol
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Performances

Example: GHZ states

2 4 6 8

N

103

104

105

N
u
N
M

b = 8.6± 0.2, a = 0.92± 0.04

b = 8.4± 0.3, a = 0.68± 0.05

(f )

→ Exponential reduction of the number of

measurements, with Nu = O(1).

Example: 10 qubit many-body entangled

states

50 100

D

0.04

0.06

0.08

0.10

E Uniform

MPS

(c)

→ Better approximations lead to better

performances

• Also tested on topological entropy of 2D topological ground states.

• Tutorial and python scripts: https://github.com/bvermersch/RandomMeas
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Measuring new quantities

• Measurement of the Quantum Fisher information: Rath, Branciard, Minguzzi,

Vermersch, Phys. Rev. Lett 2021

• Observation of the Entanglement barrier: Rath, Murciano, Vitale, Votto, Kueng,

Dubail, Branciard, Calabrese, Vermersch, arXiv:2209.04393.
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Measuring new quantities

qubit 1 |0〉

qubit 2 |0〉

...
...

qubit N |0〉

Circuit

u1

u2

uN

• Important upgrade to the toolbox:

Classical shadows (Huang et al,

Nature Physics 2020)

ρ(r) =
⊗
i∈AB

(
3ui |k(r)i 〉 〈k

(r)
i | u

†
i − 1i

)
(10)

• For a single measurement, unbiased

estimations of the density matrix

E [ρ(r)] = ρ (11)
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Measuring new quantities

• Classical shadows provide access to ‘multi-copy observables’ (MCO)

Tr(Oρ⊗n) = E [Tr(Oρ(r1) ⊗ · · · ⊗ ρ(rn))] (12)

• Examples: Rényi entropies, Partial-Transpose moments (Elben et al, PRL 2020),

Symmetry-resolved entropies (Vitale et al, Sci Post 2021), etc

• Can I write/measure a given physical quantity as MCO? What is the cost in terms

of statistical errors? postprocessing?
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Quantum Fisher information

• Quantum Fisher information (QFI)

FQ = 2
∑

(i ,j),λi+λj>0

(λi − λj)2
λi + λj

| 〈i |A |j〉 |2 with ρ =
∑
i

λi |i〉 〈i | (13)

• Certifies metrological power and entanglement depth (how many particles are

entangled)

• Rath et al (PRL 2021): QFI is the limit of a series of MCO, i.e can be measured!

Fn = 2 Tr

( n∑
`=0

(ρ⊗ 1− 1⊗ ρ)2(1⊗ 1− ρ⊗ 1− 1⊗ ρ)`S(A⊗ A)

)
. (14)
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Quantum Fisher information and MCO: Statistical Errors

• The series of MCO Fn converges to QFI, and is estimated via randomized

measurements

Fn = Tr(Oρ⊗n) = E [Tr(Oρ(r1) ⊗ · · · ⊗ ρ(rn))] (15)

• What is the cost in measurements of a MCO O as a function of the order n?

• Typical number of measurement (error ε, confidence δ)

M ≥ max
1≤k≤n

{(
n n!2

k!(n − k)!2
tr([Ok ]2)

ε2δ

) 1
k

2N + k − 1

}
. (16)

•
Ok =

1

q!

∑
π

Tr{k+1...n}(π
†Oπ[1⊗k ⊗ ρ⊗(n−k)]) (17)
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Quantum Fisher information and MCO: Illustrations

• Illustration with a noisy GHZ state (depolarization noise p)

0 2 4 6 8

n

0

50

100

F
n

p 0.1

0.25

0.5

0.75

(a)

101 102 103 104

M/20.7N

10−2

10−1

100

101

E

NNNN

2

4

6

8

(b)
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Quantum Fisher information and MCO: final remarks

• Complicated quantities such as QFI can be expressed as MCO and measured with

a known measurement budget (!)

• The relation between the order n and the number of measurements M illustrates a

tradeoff between the information given by a quantity w.r.t the cost to measure it!

• The measurement is not the only important aspect to take into account:

• Postprocessing matters E [Tr(Oρ(r1) ⊗ · · · ⊗ ρ(rn))] supposes to evaluate O(Mn)

terms

• This can be avoided using ‘batch classical shadows’, arXiv:2209.04393, without

altering statistical performances.
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Conclusions

• Randomized measurements are an active field of research: experimentally friendly

with plenty of non-trivial questions on the theory side

• Review: The randomized measurement toolbox A. Elben, S. T. Flammia, H.-Y.

Huang, R. Kueng, J. Preskill, B. V, P. Zoller, arXiv:2203.11374
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