Quantum algorithms 2023/2024: Final exam

Benoît Vermersch (benoit.vermersch@lpmmc.cnrs.fr) - 2023 Dec 18th, 10:30-12:30 (2 hours)

- Documents allowed: Slides of the lectures, documents of the exercices, hand-written notes
- You can only use your laptop to look at the documents from Moodle.
- You can also use printed versions of these documents.
- The use of smartphones or tablets is not allowed.

1 Surface code decoding

1. We recall the definition of the single qubit Pauli Y operator, $Y=i X Z$. Show that $Y X Y=-X$, and $Y Z Y=-Z$, and explain how the surface code detects single qubit Y errors.
2. With very brief justifications, give a possible list of errors explaining the following measurements of plaquette operators. As in the lecture, the presence of a -1 inside the plaquette means the measured value is -1 . Otherwise, the measured value is 1 .

2 Warm-ups for Simon's problem

2.1 XOR operations

Note: The following results will be useful for the rest of the exam.

1. Recall the truth table of the XOR operation $A \oplus B$ on two bits A, B.
2. It can be proven easily that the XOR operation is associative, i.e $(A \oplus B) \oplus C=A \oplus(B \oplus C)$. Using this property, show that $B=A \oplus(A \oplus B)$.

2.2 Hadamard gate

Note: The following results will be useful for the rest of the exam.

1. Show that $H^{\otimes n}\left|0^{\otimes n}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x}|x\rangle$, where \sum_{x} is the sum over all possible 2^{n} bitstrings $x=\left(x_{1}, \ldots, x_{n}\right)$.
2. Show that $H^{\otimes n}|x\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{w}(-1)^{x . w}|w\rangle$, with $x . w=\sum_{i} x_{i} w_{i} \bmod (2)$. In the second part of the exam, we will use the fact that x.w can be rewritten as $x . w=x_{1} w_{1} \oplus x_{2} w_{2} \oplus \cdots \oplus x_{n} w_{n}$ (I am not asking you to prove this).

3 Simon's problem

We consider a function $f=\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ mapping a bitstring $x=\left(x_{1}, \ldots, x_{n}\right)$ of length n to another bitstring $f(x)$, which is also of length n. We assume that this function satisfies the property

$$
\begin{equation*}
f(x)=f(y) \text { if and only if }(y=x \text { or } y=x \oplus s) \tag{1}
\end{equation*}
$$

where \oplus denotes here the 'bitwise' XOR function, i.e., $x \oplus s=\left(x_{1} \oplus s_{1}, \ldots, x_{n} \oplus s_{n}\right)$, and $s \neq(0, \ldots, 0)$. Our goal is to find the bitstring s. Note: the following two subsections can be treated independently.

3.1 Classical algorithm

1. Simon's problem is a hard problem for a classical computer, i.e., requires typically expononentially many queries to the oracle function $f(x)$. In order to prove this statement, first show that one can only obtain s by finding two different bitstrings x and y such that $f(x)=f(y)$.
2. Explain without further calculations why one typically needs to evaluate f exponentially many times to find two such bitstrings x and y.

3.2 Quantum algorithm for Simon's problem

Given the function f, we first introduce a quantum oracle U_{f}. It acts on two n-qubit registers as follows

$$
\begin{equation*}
U_{f}|x, z\rangle=|x, z \oplus f(x)\rangle \tag{2}
\end{equation*}
$$

where x and z are two n-qubits states, and \oplus is again the bitwise XOR operation.

1. The quantum circuit we consider is given by

Write the wavefunction after the first n Hadamard gates.
2. Write the wavefunction of the circuit after the oracle U_{f}
3. Write the wavefunction of the circuit after the last n Hadamards (just before the measurement)
4. Show that the probability to measure a bitstring w at the end of the circuit reads

$$
\begin{equation*}
P(w)=\frac{1}{4^{n}} \sum_{x}\left(1+(-1)^{x \cdot w+(x \oplus s) \cdot w)}\right) \tag{3}
\end{equation*}
$$

Note: we recall that the probability to measure w can be expressed as $P(w)=\langle\psi|\left(|w\rangle\langle w| \otimes 1_{n}\right)|\psi\rangle$, where $|\psi\rangle$ is the state of the quantum system, and 1_{n} is the identity operator on n qubits.
5. Using the relation, (known as distributivity of XOR and AND operations)

$$
\begin{equation*}
(x \oplus s) \cdot w=(x \cdot w) \oplus(s . w) \tag{4}
\end{equation*}
$$

Simplify the expression of the probability $P(w)$ for the two cases (i) $s . w=0$ and (ii) s.w $=1$. Show that this means the measurement provides meaningful information about s.
6. We perform M measurements, leading to M measured bitstrings $w^{(t)}, t=1, \ldots, M$. Represent this data as a linear system of equations over s. Explain without further calculations that s can be obtained from this system of equations when M is of order n.

