Quantum algorithms 2023/2024: Final exam

Benoît Vermersch (benoit.vermersch@lpmmc.cnrs.fr) - 2023 Jan 9th, 10:15-12:15 (2 hours)

- Documents allowed: Slides of the lectures, documents of the exercices, hand-written notes
- You can only use your laptop to look at the documents from Moodle.
- You can also use printed versions of these documents.
- The use of smartphones or tablets is not allowed.

1 Surface code decoding

1. We recall the definition of the single qubit Pauli Y operator, $Y=i X Z$. Show that $Y X Y=-X$, and $Y Z Y=-Z$, and explain how the surface code detects single qubit Y errors.
Solution: $Y X Y=i^{2} X Z X^{2} Z=-X Z^{2}=-X, Y Z Y=i^{2} X Z^{2} X Z=-Z$. Therefore, single qubit Y errors will flip the expectation value of both corresponding X and Z plaquette operators.
2. With very brief justifications, give a possible list of errors explaining the following measurements of plaquette operators. As in the lecture, the presence of a -1 inside the plaquette means the measured value is -1 . Otherwise, the measured value is 1 .

Solution: The top-left pattern of errors can be easily explained via an X error between the two faulty Z plaquettes, and a Z error between the two faulty X plaquettes.
To explain the faulty X plaquettes in the bottom right, we need to consider at the intersection either a Z or a Y error. This turns out to be a Y error to explain the right faulty Z plaquette, and we have also an X error on the other side.

2 Warm-ups for Simon's problem

2.1 XOR operations

Note: The following results will be useful for the rest of the exam.

1. Recall the truth table of the XOR operation $A \oplus B$ on two bits A, B.

Solution: | A | B | $A \oplus B$ | |
| :---: | :---: | :---: | :---: |
| | 0 | 0 | 0 |
| | 0 | 1 | 1 |
| | 1 | 0 | 1 |
| | 1 | 1 | 0 |

2. It can be proven easily that the XOR operation is associative, i.e $(A \oplus B) \oplus C=A \oplus(B \oplus C)$. Using this property, show that $B=A \oplus(A \oplus B)$.
Solution: Therefore $A \oplus(A \oplus B)=(A \oplus A) \oplus B=0 \oplus B=B$

2.2 Hadamard gate

Note: The following results will be useful for the rest of the exam.

1. Show that $H^{\otimes n}\left|0^{\otimes n}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x}|x\rangle$, where \sum_{x}, is the sum over all possible 2^{n} bitstrings $x=\left(x_{1}, \ldots, x_{n}\right)$.

Solution:

$$
\begin{equation*}
H^{\otimes n}\left|0^{\otimes n}\right\rangle=\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right) \ldots\left(\frac{|0\rangle+|1\rangle}{\sqrt{2}}\right)=\frac{1}{\sqrt{2^{n}}} \sum_{x_{1}, \ldots, x_{n}}\left(\left|x_{1}\right\rangle \ldots\left|x_{n}\right\rangle\right)=\frac{1}{\sqrt{2^{n}}} \sum_{x}|x\rangle \tag{1}
\end{equation*}
$$

2. Show that $H^{\otimes n}|x\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{w}(-1)^{x . w}|w\rangle$, with $x . w=\sum_{i} x_{i} w_{i} \bmod (2)$. In the second part of the exam, we will use the fact that $x . w$ can be rewritten as $x . w=x_{1} w_{1} \oplus x_{2} w_{2} \oplus \cdots \oplus x_{n} w_{n}$ (I am not asking you to prove this).

Solution:

$$
\begin{equation*}
H^{\otimes n}|x\rangle=H\left|x_{1}\right\rangle \ldots H\left|x_{n}\right\rangle \tag{2}
\end{equation*}
$$

We know that $H\left|x_{i}\right\rangle=(|0\rangle+|1\rangle) \sqrt{2}$ if $x_{i}=0, H\left|x_{i}\right\rangle=(|0\rangle-|1\rangle) \sqrt{2}$ if $x_{i}=1$. Therefore, for any x_{i},

$$
\begin{equation*}
H\left|x_{i}\right\rangle=\frac{|0\rangle+(-1)^{x_{i}}|1\rangle}{\sqrt{2}}=\frac{\sum_{w_{i}=0}^{1}(-1)^{x_{i} w_{i}}\left|w_{i}\right\rangle}{\sqrt{2}} \tag{3}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
H^{\otimes n}|x\rangle=\frac{1}{\sqrt{2^{n}}}\left(\sum_{w_{1}}(-1)^{x_{1} w_{1}}\left|w_{1}\right\rangle\right) \ldots\left(\sum_{w_{n}}(-1)^{x_{n} w_{n}}\left|w_{n}\right\rangle\right)=\frac{1}{\sqrt{2^{n}}} \sum_{w}(-1)^{x . w}|w\rangle \tag{4}
\end{equation*}
$$

with $x . w=\sum_{i} x_{i} w_{i} \bmod (2)$.
Note: The fact that $\sum_{i} x_{i} w_{i} \bmod (2)=x_{1} w_{1} \oplus \cdots \oplus x_{n} w_{n}$ can be proven by recurrence.

3 Simon's problem

We consider a function $f=\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ mapping a bitstring $x=\left(x_{1}, \ldots, x_{n}\right)$ of length n to another bitstring $f(x)$, which is also of length n. We assume that this function satisfies the property

$$
\begin{equation*}
f(x)=f(y) \text { if and only if }(x=y \text { or } y=x \oplus s) \tag{5}
\end{equation*}
$$

where \oplus denotes here the 'bitwise' XOR function, i.e., $x \oplus s=\left(x_{1} \oplus s_{1}, \ldots, x_{n} \oplus s_{n}\right)$. Our goal is to find the bitstring s (which is assumed different from 0^{n}). Note: the following two subsections can be treated independently.

3.1 Classical algorithm

1. Simon's problem is 'hard' for a classical computer, i.e., requires typically expononentially many queries to the oracle function $f(x)$. In order to prove this statement, first show that one can obtain s by finding two different bitstrings x and y such that $f(x)=f(y)$.
Solution: The only thing we can do in a classical algorithm is to evaluate f sequentially. When we observe different outputs $f(x) \neq f(y)$, we cannot say anything about s. When we observe a doublon $f(x)=f(y)$, we can learn s. This is because in this case, we know that $y=x \oplus s$, and we can compute

$$
\begin{equation*}
x \oplus y=\left(x_{1} \oplus y_{1}, \ldots, x_{n} \oplus y_{n}\right)=\left(x_{1} \oplus\left(x_{1} \oplus s_{1}\right), \ldots, x_{n} \oplus\left(x_{n} \oplus s_{n}\right)\right)=\left(s_{1}, \ldots, s_{n}\right)=s \tag{6}
\end{equation*}
$$

i.e we can learn s from the knowledge of x and y.
2. Explain without further calculations why one typically needs to evaluate f exponentially many times to find two such bitstrings x and y.
Solution: We need two finds two doublons in a an exponentially large dataset (2^{n} bistrings). This is clearly exponentially hard. Note: The typical number of required queries to obtain a doublon with order 1 probability is $\sqrt{2^{n}}$, as known from the 'birthday paradox' paradigm.

3.2 Quantum algorithm for Simon's problem

Given the function f, we first introduce a quantum oracle U_{f}. It acts on two registers of n qubits each as follows

$$
\begin{equation*}
U_{f}|x, z\rangle=|x, z \oplus f(x)\rangle . \tag{7}
\end{equation*}
$$

where x and z are two n-qubits states, and \oplus is again the bitwise XOR operation.

1. The quantum circuit we consider is given by

Write the wavefunction after the first n Hadamard gates.

Solution:

$$
\begin{equation*}
|\psi\rangle=H^{\otimes n}\left|0^{\otimes n}\right\rangle\left|0^{\otimes n}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x}\left|x, 0^{\otimes n}\right\rangle \tag{8}
\end{equation*}
$$

2. Write the wavefunction of the circuit after the oracle U_{f}

Solution:

$$
\begin{equation*}
|\psi\rangle=\frac{1}{\sqrt{2^{n}}} U_{f} \sum_{x}\left|x, 0^{\otimes n}\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x}\left|x, 0^{\otimes n} \oplus f(x)\right\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x}|x, f(x)\rangle \tag{9}
\end{equation*}
$$

3. Write the wavefunction of the circuit after the last n Hadamards (just before the measurement)

Solution:

$$
\begin{equation*}
|\psi\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{x} H^{\otimes n}|x, f(x)\rangle=\frac{1}{2^{n}} \sum_{x, w}(-1)^{x \cdot w}|w, f(x)\rangle \tag{10}
\end{equation*}
$$

4. Show that the probability to measure a bitstring w at the end of the circuit reads

$$
\begin{equation*}
P(w)=\frac{1}{4^{n}} \sum_{x}\left(1+(-1)^{x \cdot w+(x \oplus s) \cdot w)}\right) \tag{11}
\end{equation*}
$$

Note: we recall that the probability to measure w can be expressed as $P(w)=\langle\psi|\left(|w\rangle\langle w| \otimes 1_{n}\right)|\psi\rangle$, where $|\psi\rangle$ is the state of the quantum system.

Solution:

$$
\begin{equation*}
P(w)=\langle\psi|(|w\rangle\langle w| \otimes \mathbf{1})|\psi\rangle=\frac{1}{4^{n}} \sum_{x, y}(-1)^{x \cdot w+y \cdot w}\langle f(x) \mid f(y)\rangle \tag{12}
\end{equation*}
$$

Now we use that $f(x)=f(y)$ iff $y=x$ or $y=x \oplus s$.

$$
\begin{equation*}
P(w)=\langle\psi|(|w\rangle\langle w| \otimes \mathbf{1})|\psi\rangle=\frac{1}{4^{n}} \sum_{x}\left(1+(-1)^{x \cdot w+(x \oplus s) \cdot w)}\right) \tag{13}
\end{equation*}
$$

5. Using the relation, (known as distributivity of XOR and AND operations)

$$
\begin{equation*}
(x \oplus s) \cdot w=(x \cdot w) \oplus(s . w) \tag{14}
\end{equation*}
$$

Simplify the expression of the probability $P(w)$ for the two cases (i) $s . w=0$ and (ii) s.w $=1$. Show that this means the measurement provides meaningful information about s.
Solution:

$$
\begin{equation*}
P(w)=\frac{1}{4^{n}} \sum_{x}\left(1+(-1)^{x . w+(x . w) \oplus(s . w)}\right) \tag{15}
\end{equation*}
$$

If s.w $=1, x . w+(x . w) \oplus(s . w)=1$, therefore $P(w)=0$. Instead, if s. $w=0, x . w+(x . w) \oplus(s . w)=0 \bmod (2)$, and therefore

$$
\begin{equation*}
P(w)=\frac{1}{4^{n}} \sum_{x} 2=\frac{1}{2^{n-1}} \tag{16}
\end{equation*}
$$

There the bitstrings w that we measure are such s.w $=0$. This is a linear relation that we can try to invert to find s.
Note the above property can be proven as follows:

$$
\begin{equation*}
(x \oplus s) \cdot w=\left(x_{1} \oplus s_{1}\right) w_{1} \oplus \cdots=\left(x_{1} w_{1} \oplus s_{1} w_{1}\right) \oplus \cdots=x . w \oplus s . w \tag{17}
\end{equation*}
$$

6. We perform M measurements, leading to M measured bitstrings $w^{(t)}, t=1, \ldots, M$. Represent this data as a linear system of equations over s. Explain without further calculations that s can be obtained from this system of equations when M is of order n.
Solution: We have

$$
\begin{array}{r}
s . w^{(1)}=s_{1} w_{1}^{(1)} \oplus s_{2} w_{2}^{(1)} \oplus \ldots=0 \\
s . w^{(2)}=s_{1} w_{1}^{(2)} \oplus s_{2} w_{2}^{(2)} \oplus \ldots=0 \\
\ldots \tag{20}\\
s . w^{(M)}=s_{1} w_{1}^{(M)} \oplus s_{2} w_{2}^{(M)} \oplus \ldots=0
\end{array}
$$

When $M>n$, we have obtained from random sampling over 2^{n-1} choices of w, M such equations. Thus, there is a high probability that we have obtained at least n linearly independent equations. As the unknown variable s is a vector of n entries, we can then solve the system efficiently on a classical computer, using for instance Gaussian elimination.

