Quantum algorithms 2023/2024: Final exam

Benoit Vermersch (benoit.vermersch@lpmme.cnrs.fr) - 2023 Jan 9th, 10:15-12:15 (2 hours)

e Documents allowed: Slides of the lectures, documents of the exercices, hand-written notes
e You can only use your laptop to look at the documents from Moodle.
e You can also use printed versions of these documents.

e The use of smartphones or tablets is not allowed.

Surface code decoding

1. We recall the definition of the single qubit Pauli Y operator, ¥ = ¢XZ. Show that YXY = —X, and
YZY = —Z, and explain how the surface code detects single qubit Y errors.
Solution: YXY =i?2XZX?7 = -X7?=-X,YZY =i?XZ%2X7Z = —Z. Therefore, single qubit Y errors
will flip the expectation value of both corresponding X and Z plaquette operators.

2. With very brief justifications, give a possible list of errors explaining the following measurements of plaquette
operators. As in the lecture, the presence of a —1 inside the plaquette means the measured value is —1.
Otherwise, the measured value is 1.
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Solution: The top-left pattern of errors can be easily explained via an X error between the two faulty Z
plaquettes, and a Z error between the two faulty X plaquettes.

To explain the faulty X plaquettes in the bottom right, we need to consider at the intersection either a Z or
a'Y error. This turns out to be a 'Y error to explain the right faulty Z plaquette, and we have also an X
error on the other side.



2 Warm-ups for Simon’s problem

2.1 XOR operations

Note: The following results will be useful for the rest of the exam.

1. Recall the truth table of the XOR operation A @ B on two bits A, B.

A|B| A®B
0| 0 0
Solution: 0 | 1 1
110 1
111 0

2. Tt can be proven easily that the XOR operation is associative, i.e (A® B)®C = A® (B @ C). Using this
property, show that B=A® (A ® B).

Solution: Therefore A (A®@ B)=(A®A)@B=0doB=RB

2.2 Hadamard gate

Note: The following results will be useful for the rest of the exam.

1. Show that H®™ |0®") = 12n >, |x), where }~ . is the sum over all possible 2" bitstrings « = (z1,..., ).

Solution:
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2. Show that H®" |z) = = 3" (=1)®% |w), with z.w = Y, z;w; mod(2). In the second part of the exam, we

271,
will use the fact that x.w can be rewritten as r.w = 1w O Tows @ - - - B xywy, (I am not asking you to prove
this).
Solution:
qen |x) = H|z1) ... H |x,) (2)

We know that H |z;) = (|0) 4+ [1)v/2 if #; = 0, H |x;) = (|0) — |1))V/2 if x; = 1. Therefore, for any z;,

x; 1 _1\riw; w;
Hxi>:|o>+(;§1) 1>:Zwi_o(\/1§) |wi) 3)

and we obtain

H" |z) = \/12—" (2:(—1)“””1 |w1>> (Z(—l)““’" Iwn>> = \/1272(—1)” |w) (4)
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with x.w =), x;w; mod(2).

Note: The fact that )", x;w; mod(2) = 1wy @ --- @ xpwy can be proven by recurrence.

3 Simon’s problem

We consider a function f = {0,1}" — {0, 1}™ mapping a bitstring x = (z1, ..., x,) of length n to another bitstring
f(x), which is also of length n. We assume that this function satisfies the property

flz)=f(y)ifand only if (x =y ory=2x P s), (5)
where @ denotes here the ‘bitwise’ XOR function, ie., z ® s = (x1 ® $1,..., T, ® ). Our goal is to find the
bitstring s (which is assumed different from 0™). Note: the following two subsections can be treated independently.

3.1 Classical algorithm

1. Simon’s problem is ‘hard’ for a classical computer, i.e., requires typically expononentially many queries to
the oracle function f(z). In order to prove this statement, first show that one can obtain s by finding two
different bitstrings x and y such that f(z) = f(y).

Solution: The only thing we can do in a classical algorithm is to evaluate f sequentially. When we observe
different outputs f(z) # f(y), we cannot say anything about s. When we observe a doublon f(x) = f(y), we
can learn s. This is because in this case, we know that y = ¢ @ s, and we can compute

TQY=(210Y1,..., T DYn) = (21 D (X1 D 81),.. ., Zn D (Tp D 5p)) = (51,...,8,) =5 (6)
i.e we can learn s from the knowledge of x and y.

2. Explain without further calculations why one typically needs to evaluate f exponentially many times to find
two such bitstrings = and y.

Solution: We need two finds two doublons in a an exponentially large dataset (2™ bistrings). This is clearly
exponentially hard. Note: The typical number of required queries to obtain a doublon with order 1 probability
is V27, as known from the ‘birthday paradox’ paradigm.

3.2 Quantum algorithm for Simon’s problem

Given the function f, we first introduce a quantum oracle U¢. It acts on two registers of n qubits each as follows
Uglw,z) = |z,2® f(x)) . (7)

where = and z are two n-qubits states, and @ is again the bitwise XOR operation.

1. The quantum circuit we consider is given by

|0®n> H®n . z Ho®n
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Write the wavefunction after the first n Hadamard gates.

Solution:

) = HO" 107 07) = = 312 0°7) ©

. Write the wavefunction of the circuit after the oracle Uy

Solution:

1 1 1
) = ﬁUf XI: |z, 09™) = VoD zm: |z, 09" & f(z)) = NoT zﬂﬁ: |z, f()) 9)

. Write the wavefunction of the circuit after the last n Hadamards (just before the measurement)

Solution: .

\/27

. Show that the probability to measure a bitstring w at the end of the circuit reads

1

P(w) = 57 S (1 (—1)7He2) 1)

S HE a, f(a)) = g S (-5, f(2) (10)
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Note: we recall that the probability to measure w can be expressed as P(w) = (¢] (Jw) (w| ® 1,,) |¢), where
|1 is the state of the quantum system.

Solution: 1
P(w) = @l(jw) (w[@1)[¥) = = D (=0T ()| f(y) (12)
Now we use that f(z) = f(y) iff y=z ory=ads.

Pw) = (¢[(lw) (w] @ 1)|¢) = 4% D (L (mpyretesse) (13)

. Using the relation, (known as distributivity of XOR and AND operations)
(z @ s)w = (z.w) ® (s.w) (14)

Simplify the expression of the probability P(w) for the two cases (i) s.w = 0 and (ii) s.w = 1. Show that
this means the measurement provides meaningful information about s.
Solution: 1
- _1\zwt(z.w)d(s.w)
Plw) =5 D (+(-1) ) (15)

Ifsw=1, z.w+ (z.w)®(s.w) = 1, therefore P(w) = 0. Instead, if s.w =0, z.w+ (z.w)® (s.w) = 0 mod(2),
and therefore

P(w) = 4% D 2= in_l (16)

xT
There the bitstrings w that we measure are such s.w = 0. This is a linear relation that we can try to invert
to find s.

Note the above property can be proven as follows:
(x®s)w=(x1Ds1)w B+ = (x1w1 Dsywr) D+ =z.wds.w (17)

. We perform M measurements, leading to M measured bitstrings w®, t = 1,..., M. Represent this data as
a linear system of equations over s. Explain without further calculations that s can be obtained from this
system of equations when M is of order n.

Solution: We have

saw) = slwgl) ® sgwél) ®...=0 (18)
saw® = s1w§2) ® 52w§2) ®...=0 (19)
(20)

saw™M) = slng) D szwéM) ®...=0 (21)

When M > n, we have obtained from random sampling over 2"~1 choices of w, M such equations. Thus,
there is a high probability that we have obtained at least n linearly independent equations. As the unknown
variable s is a vector of n entries, we can then solve the system efficiently on a classical computer, using for
instance Gaussian elimination.
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