
Quantum algorithms 2023/2024: Final exam
Benôıt Vermersch (benoit.vermersch@lpmmc.cnrs.fr) - 2023 Jan 9th, 10:15-12:15 (2 hours)

• Documents allowed: Slides of the lectures, documents of the exercices, hand-written notes

• You can only use your laptop to look at the documents from Moodle.

• You can also use printed versions of these documents.

• The use of smartphones or tablets is not allowed.

1 Surface code decoding

1. We recall the definition of the single qubit Pauli Y operator, Y = iXZ. Show that Y XY = −X, and
Y ZY = −Z, and explain how the surface code detects single qubit Y errors.

Solution: Y XY = i2XZX2Z = −XZ2 = −X, Y ZY = i2XZ2XZ = −Z. Therefore, single qubit Y errors
will flip the expectation value of both corresponding X and Z plaquette operators.

2. With very brief justifications, give a possible list of errors explaining the following measurements of plaquette
operators. As in the lecture, the presence of a −1 inside the plaquette means the measured value is −1.
Otherwise, the measured value is 1.
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Solution: The top-left pattern of errors can be easily explained via an X error between the two faulty Z
plaquettes, and a Z error between the two faulty X plaquettes.

To explain the faulty X plaquettes in the bottom right, we need to consider at the intersection either a Z or
a Y error. This turns out to be a Y error to explain the right faulty Z plaquette, and we have also an X
error on the other side.
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2 Warm-ups for Simon’s problem

2.1 XOR operations

Note: The following results will be useful for the rest of the exam.

1. Recall the truth table of the XOR operation A⊕B on two bits A,B.

Solution:

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

2. It can be proven easily that the XOR operation is associative, i.e (A ⊕ B) ⊕ C = A ⊕ (B ⊕ C). Using this
property, show that B = A⊕ (A⊕B).

Solution: Therefore A⊕ (A⊕B) = (A⊕A)⊕B = 0⊕B = B

2.2 Hadamard gate

Note: The following results will be useful for the rest of the exam.

1. Show that H⊗n |0⊗n⟩ = 1√
2n

∑
x |x⟩, where

∑
x, is the sum over all possible 2n bitstrings x = (x1, . . . , xn).

Solution:

H⊗n |0⊗n⟩ =
(
|0⟩+ |1⟩√

2

)
. . .

(
|0⟩+ |1⟩√

2

)
=

1√
2n

∑
x1,...,xn

(|x1⟩ . . . |xn⟩) =
1√
2n

∑
x

|x⟩ (1)
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2. Show that H⊗n |x⟩ = 1√
2n

∑
w(−1)x.w |w⟩, with x.w =

∑
i xiwi mod(2). In the second part of the exam, we

will use the fact that x.w can be rewritten as x.w = x1w1 ⊕ x2w2 ⊕ · · · ⊕ xnwn (I am not asking you to prove
this).

Solution:
H⊗n |x⟩ = H |x1⟩ . . . H |xn⟩ (2)

We know that H |xi⟩ = (|0⟩+ |1⟩)
√
2 if xi = 0, H |xi⟩ = (|0⟩ − |1⟩)

√
2 if xi = 1. Therefore, for any xi,

H |xi⟩ =
|0⟩+ (−1)xi |1⟩√

2
=

∑1
wi=0(−1)xiwi |wi⟩√

2
(3)

and we obtain

H⊗n |x⟩ = 1√
2n

(∑
w1

(−1)x1w1 |w1⟩

)
. . .

(∑
wn

(−1)xnwn |wn⟩

)
=

1√
2n

∑
w

(−1)x.w |w⟩ (4)

with x.w =
∑

i xiwi mod(2).

Note: The fact that
∑

i xiwi mod(2) = x1w1 ⊕ · · · ⊕ xnwn can be proven by recurrence.

3 Simon’s problem

We consider a function f = {0, 1}n → {0, 1}n mapping a bitstring x = (x1, . . . , xn) of length n to another bitstring
f(x), which is also of length n. We assume that this function satisfies the property

f(x) = f(y) if and only if (x = y or y = x⊕ s), (5)

where ⊕ denotes here the ‘bitwise’ XOR function, i.e., x ⊕ s = (x1 ⊕ s1, . . . , xn ⊕ sn). Our goal is to find the
bitstring s (which is assumed different from 0n). Note: the following two subsections can be treated independently.

3.1 Classical algorithm

1. Simon’s problem is ‘hard’ for a classical computer, i.e., requires typically expononentially many queries to
the oracle function f(x). In order to prove this statement, first show that one can obtain s by finding two
different bitstrings x and y such that f(x) = f(y).

Solution: The only thing we can do in a classical algorithm is to evaluate f sequentially. When we observe
different outputs f(x) ̸= f(y), we cannot say anything about s. When we observe a doublon f(x) = f(y), we
can learn s. This is because in this case, we know that y = x⊕ s, and we can compute

x⊕ y = (x1 ⊕ y1, . . . , xn ⊕ yn) = (x1 ⊕ (x1 ⊕ s1), . . . , xn ⊕ (xn ⊕ sn)) = (s1, . . . , sn) = s (6)

i.e we can learn s from the knowledge of x and y.

2. Explain without further calculations why one typically needs to evaluate f exponentially many times to find
two such bitstrings x and y.

Solution: We need two finds two doublons in a an exponentially large dataset (2n bistrings). This is clearly
exponentially hard. Note: The typical number of required queries to obtain a doublon with order 1 probability
is

√
2n, as known from the ‘birthday paradox’ paradigm.

3.2 Quantum algorithm for Simon’s problem

Given the function f , we first introduce a quantum oracle Uf . It acts on two registers of n qubits each as follows

Uf |x, z⟩ = |x, z ⊕ f(x)⟩ . (7)

where x and z are two n-qubits states, and ⊕ is again the bitwise XOR operation.

1. The quantum circuit we consider is given by

|0⊗n⟩

|0⊗n⟩

H⊗n

Uf

H⊗nx x

z z ⊕ f(x)
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Write the wavefunction after the first n Hadamard gates.

Solution:

|ψ⟩ = H⊗n |0⊗n⟩ |0⊗n⟩ = 1√
2n

∑
x

|x, 0⊗n⟩ (8)

2. Write the wavefunction of the circuit after the oracle Uf

Solution:

|ψ⟩ = 1√
2n
Uf

∑
x

|x, 0⊗n⟩ = 1√
2n

∑
x

|x, 0⊗n ⊕ f(x)⟩ = 1√
2n

∑
x

|x, f(x)⟩ (9)

3. Write the wavefunction of the circuit after the last n Hadamards (just before the measurement)

Solution:

|ψ⟩ = 1√
2n

∑
x

H⊗n |x, f(x)⟩ = 1

2n

∑
x,w

(−1)x.w |w, f(x)⟩ (10)

4. Show that the probability to measure a bitstring w at the end of the circuit reads

P (w) =
1

4n

∑
x

(1 + (−1)x.w+(x⊕s).w)) (11)

Note: we recall that the probability to measure w can be expressed as P (w) = ⟨ψ| (|w⟩ ⟨w| ⊗ 1n) |ψ⟩, where
|ψ⟩ is the state of the quantum system.

Solution:

P (w) = ⟨ψ|(|w⟩ ⟨w| ⊗ 1)|ψ⟩ = 1

4n

∑
x,y

(−1)x.w+y.w ⟨f(x)|f(y)⟩ (12)

Now we use that f(x) = f(y) iff y = x or y = x⊕ s.

P (w) = ⟨ψ|(|w⟩ ⟨w| ⊗ 1)|ψ⟩ = 1

4n

∑
x

(1 + (−1)x.w+(x⊕s).w)) (13)

5. Using the relation, (known as distributivity of XOR and AND operations)

(x⊕ s).w = (x.w)⊕ (s.w) (14)

Simplify the expression of the probability P (w) for the two cases (i) s.w = 0 and (ii) s.w = 1. Show that
this means the measurement provides meaningful information about s.

Solution:

P (w) =
1

4n

∑
x

(1 + (−1)x.w+(x.w)⊕(s.w)) (15)

If s.w = 1, x.w+(x.w)⊕(s.w) = 1, therefore P (w) = 0. Instead, if s.w = 0, x.w+(x.w)⊕(s.w) = 0 mod(2),
and therefore

P (w) =
1

4n

∑
x

2 =
1

2n−1
(16)

There the bitstrings w that we measure are such s.w = 0. This is a linear relation that we can try to invert
to find s.

Note the above property can be proven as follows:

(x⊕ s).w = (x1 ⊕ s1)w1 ⊕ · · · = (x1w1 ⊕ s1w1)⊕ · · · = x.w ⊕ s.w (17)

6. We perform M measurements, leading to M measured bitstrings w(t), t = 1, . . . ,M . Represent this data as
a linear system of equations over s. Explain without further calculations that s can be obtained from this
system of equations when M is of order n.

Solution: We have

s.w(1) = s1w
(1)
1 ⊕ s2w

(1)
2 ⊕ . . . = 0 (18)

s.w(2) = s1w
(2)
1 ⊕ s2w

(2)
2 ⊕ . . . = 0 (19)

. . . (20)

s.w(M) = s1w
(M)
1 ⊕ s2w

(M)
2 ⊕ . . . = 0 (21)

When M > n, we have obtained from random sampling over 2n−1 choices of w, M such equations. Thus,
there is a high probability that we have obtained at least n linearly independent equations. As the unknown
variable s is a vector of n entries, we can then solve the system efficiently on a classical computer, using for
instance Gaussian elimination.
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