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� Documents allowed: Slides of the lectures, documents of the exercises, hand-written notes.

� You can only use your laptop to look at the documents from Moodle. The use of additional resources
(Other online material, books, AI tools, etc) is obviously strictly forbidden.

� You can also use printed versions of these documents.

� The use of smartphones or tablets is not allowed.

� There are two independent exercises. You can decide in which order you want to address them.

1 Hamiltonian simulation via quantum linear algebra

Quantum linear algebra is a recent framework that was introduced to derive quantum algorithms with optimal
performances, the most famous example being Hamiltonian Simulation, also known as digital quantum simulation
(Lecture 4).

1.1 Introduction to block encodings

We are given a matrix A of dimension 2n×2n. A block encoding of A realizes a unitary operation on m+n qubits
that satisfies

UA |0m⟩ |ψ⟩ = |0m⟩ ⊗ (A |ψ⟩) + |⊥⟩ . (1)

Here |⊥⟩ has no overlap with the ancilla initial state |0m⟩, which can be formally expressed as

Π |⊥⟩ = 0 (2)

with Π = |0m⟩ ⟨0m| ⊗ 1n, where 1n is the identity of n qubits.

1. We realize the following quantum circuit on m+ n qubits.

|0m⟩

|ψ⟩
UA

We denote as |ψ′⟩ the wavefunction of the system before measurement.

Explain based on what you have learned during the lectures how |ψ′⟩ is projected during the measurement
of a bitstring x on the first register (that is made of the first m qubits).

2. We assume that the measured bitstring is x = 0m. Show that the final state of the circuit is

|ψ′′⟩ = |0m⟩ ⊗A |ψ⟩
||A |ψ⟩ ||

, (3)

with || |ϕ⟩ || =
√

⟨ϕ|ϕ⟩.

1.2 Qubitization

We have seen that the block encoding UA allows us to apply the matrix A on a quantum state |ψ⟩. Qubitization
is a quantum routine that applies, in a similar way, a non-linear transformation of A.

1. We consider now an Hermitian matrix A, with eigenvalue decomposition

A =
∑
i

λi |νi⟩ ⟨νi| , (4)

where λi is real, the set {|νi⟩} is an orthonormal basis, and we also assume for simplicity λi ̸= ±1. Show
that we can write

UA |0m⟩ |νi⟩ = λi |0m⟩ |νi⟩+
√

1− λ2i |⊥i⟩ (5)

where |⊥i⟩ is normalized, and Π |⊥i⟩ = 0.
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2. We assume that UA is Hermitian, i.e. UA = U†
A.

Using U2
A = 1m+n, write an expression for UA |⊥i⟩ as a function of |0m⟩ |νi⟩ and |⊥i⟩.

3. Show that the matrix UA restricted in the subspace Bi formed by the two states |0m⟩ |νi⟩ and |⊥i⟩ can be
written as

UA =

(
λi

√
1− λ2i√

1− λ2i −λi

)
(6)

Note: We talk about qubitization of the operator A in this context because we can describe effectively the
action on UA for each eigenstate |νi⟩ using a two-dimensional Hilbert space.

4. We introduce the m-qubit phase operator Z = (2 |0m⟩ ⟨0m|−1m)⊗1n = 2Π−1m+n. Show that Z is unitary,
and write its expression in the subspace Bi as a 2× 2 matrix.

5. Write the “Walk operator” O = UAZ in the subspace Bi as a 2× 2 matrix.

6. We admit now that we can write (still in the Bi subspace)

Ok =

(
Tk(λi) −αk(λi)
αk(λi) ∗

)
(7)

where Tk(λi) is a so-called Chebyshev polynomial, αk(λi) is a function of λi (whose specific form is not
important), and ∗ denotes an irrelevant term.

7. Represent the circuit Ok graphically.

8. Let us consider the matrix Tk(A) =
∑

i Tk(λi) |νi⟩ ⟨νi|, show that

Tk(A) |ψ⟩ =
∑
i

ciTk(λi) |νi⟩ , (8)

where |ψ⟩ is an arbitrary n-qubit state, and ci = ⟨νi|ψ⟩.

9. Show that Ok implements a block-encoding of the matrix Tk(A).

Tip: To evaluate Ok |0m⟩ |ψ⟩, use the eigenstate decomposition |ψ⟩ =
∑

i ci |νi⟩.

1.3 Hamiltonian simulation

1. We consider the implementation of the time-evolution operator U(t) = exp(−iHt) associated with an Hamil-
tonian H on a quantum computer. We assume H = H1 + H2 and that we have the ability to implement
any circuit of the form U1(t1) = exp(−iH1t1), and U2(t2) = exp(−iH2t2). Explain how to realize U(t)
up to arbitrary accuracy using the Trotter approach described in our lectures, and draw the corresponding
quantum circuit.

2. The block encoding formalism has been shown recently to allow for Hamiltonian simulation with less
ressources compared to the Trotter approach. While the optimal scenario is based on “quantum signal
processing” (QSP), we will use here as illustration a less optimal method known as linear combination of
unitaries (LCU).

Consider a 2n × 2n matrix A =
∑2r−1

j=0 gjAj , with gj real positive coefficients, and assume that we know how
to block encode each term Aj of size 2n × 2n via a unitary matrix Uj acting on m+ n qubits. Let us define

S =
∑
j

|j⟩ ⟨j| ⊗ Uj (9)

in a combined system of r +m + n qubits, with j a sum of all possible 2r bitstrings. We also consider P
acting on the first r qubits as

P |0r⟩ = 1
√
g

∑
j

√
gj |j⟩ . (10)

with g =
∑

j |gj |.

We admit here that W = (P † ⊗ 1m+n)S(P ⊗ 1m+n) is a block encoding for the matrix A/g (proof
in the corrections)

Represent graphically the circuit associated with the unitary operator W
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3. Let us consider a Chebyshev decomposition of the exponential function

e−iHt =
∑
k

gkTk(Ht). (11)

Let also consider that we know the circuit UA that block-encodes A = Ht

Explain without further calculations how one could realize Hamiltonian simulation combining qubitization
and linear combination of unitaries.
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