

Quantum Error Correction (QEC)

Benoit.vermersch@lpmmc.cnrs.fr

Lecture 3

A qubit in the real world

Consider a single qubit state

$$\left|\psi\right\rangle = \alpha \left|0\right\rangle + \beta \left|1\right\rangle$$

$$\begin{array}{c|c} |\psi\rangle \otimes |E\rangle \rightarrow \sqrt{1 - p_x - p_y - p_z} |\psi\rangle \otimes |E\rangle + \sqrt{p_x} X |\psi\rangle \otimes |E_x\rangle + \sqrt{p_y} Y |\psi\rangle \otimes |E_y\rangle + \sqrt{p_Z} Z |\psi\rangle \otimes |E_z\rangle \\ & & & \\$$

How can we reset the qubit states (without destroying the qubit superposition)?

Quantum Error Correction

The only known way to do quantum error correction is to encode a **logical** qubit in a enlarged Hilbert space, e.g., many **physical** qubits

Our first QEC code: The three-qubit bit-flip code

Our first QEC code: The three-qubit bit-flip code $|\psi
angle=lpha\,|000
angle+eta\,|111
angle$ The basic idea:

One spin flips, e.g $|\psi\rangle = \alpha |100\rangle + \beta |011\rangle$

First step \rightarrow Error syndrome : S=Z₁Z₂, Z₂Z₃

 \rightarrow measurement that does not destroy the superposition ($|\psi\rangle$ eigenstate of the corresponding observable)

 \rightarrow The measurements detects the error unambiguously

$$\langle Z_1 Z_2 \rangle = -1 \qquad \langle Z_2 Z_3 \rangle = 1$$

Second step $_{
ightarrow}$ Error recovery : $X_1 \ket{\psi}$

Question: Error syndrome/Recovery for the second and third qubit ?

Our first QEC code: The three-qubit bit-flip code

Implementation :

1. Create a logical qubit via two qubit entangling gates

Our first QEC code: The three-qubit bit-flip code

Implementation :

2. Evolve the logical qubit in the 'code world'

Question :

Write down the state at this point

Our first QEC code: The three-qubit bit-flip code

Implementation :

3. Error syndrome (without destroying the qubit superposition, i.e measuring Z_1, Z_2, Z_3)

Question : Why does this measure

$$\langle Z_1 Z_2
angle$$
 and $\langle Z_2 Z_3
angle$?

Can we correct for phase-flip errors ?

4. Error recovery (easy part and optional)

Lecture 3

Our second QEC code: The steane code

Goal: Correct arbitrary single qubit gates

$$\begin{aligned} |\psi\rangle \otimes |E\rangle &\to \sqrt{1 - p_x - p_y - p_z} |\psi\rangle \otimes |E\rangle + \sqrt{p_x} X |\psi\rangle \otimes |E_x\rangle + \sqrt{p_y} Y |\psi\rangle \otimes |E_y\rangle + \sqrt{p_z} Z |\psi\rangle \otimes |E_z\rangle \\ & \text{No errors} & \text{Bit flip} & \text{Bit+Phase flip} & \text{Phase flip} \end{aligned}$$

For the qubit, this error decomposition **is complete** (proof in terms of Kraus representation of quantum processes)

The Steane code corrects for bit flip, phase flips, and bit+phase flips, thus for arbitrary single qubit errors.

The Steane code

Code world

$$|\psi\rangle = \alpha \,|0\rangle_L + \beta \,|1\rangle_L$$

$$\begin{split} |0\rangle_L \ &= \ |0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &+ |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle \\ |1\rangle_L \ &= X_{111111} \ |0\rangle_L \,. \end{split}$$

 \rightarrow 1 logical qubits = 7 physical qubits

The Steane code

$$\begin{split} |0\rangle_L \ &= \ |0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle \\ &+ |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle \\ |1\rangle_L \ &= X_{111111} \ |0\rangle_L \ . \end{split}$$

Syndrome\Error	0	X ₁	X ₂	X ₃	X ₄	X ₅	X ₆	X ₇	Z ₁	Z ₂	Z ₃	Z ₄	Z ₅	Z ₆	Z ₇	Y	•••
$Z_4 Z_5 Z_6 Z_7$	1	1	1	1	-1	-1	-1	-1	1	1	1	1	1	1	1	1	
$\mathbf{Z}_{2}\mathbf{Z}_{3}\mathbf{Z}_{6}\mathbf{Z}_{7}$	1	1	-1	-1	1	1	-1	-1	1	1	1	1	1	1	1	1	
$Z_{1}Z_{3}Z_{5}Z_{7}$	1	-1	1	-1	1	-1	1	-1	1	1	1	1	1	1	1	-1	
$X_4 X_5 X_6 X_7$	1	1	1	1	1	1	1	1	1	1	1	-1	-1	-1	-1	1	
$X_{2}X_{3}X_{6}X_{7}$	1	1	1	1	1	1	1	1	1	-1	-1	1	1	-1	-1	1	
$X_{1}X_{3}X_{5}X_{7}$	1	1	1	1	1	1	1	1	-1	1	-1	1	-1	1	-1	-1	

Strict Conditions for QEC :

- \rightarrow (1) The code world is not affected by the syndrome measurement
- \rightarrow (2) A unique error syndrome per error

Stabilizer formalism

Strict Conditions for QEC :

- \rightarrow (1) Any logical qubit state is not affected by the syndrome measurement
- \rightarrow (2) A unique error syndrome per error

These conditions can be easily checked for codes that are written in the stabilizer formalism

Stabilizer code [n,k] (Gottesman and coworkers, 1997)

- \rightarrow Consider n physical qubits.
- \rightarrow Consider S a subgroup in the group of Pauli matrices generated by (n-k) commuting elements g_1,...,g_{n-k}
- \rightarrow Then V_s the vector space stabilized by S, is of dimension 2^k, i.e. can encode k logical qubits
- \rightarrow The set of possible Errors {E_k} that can be corrected are such that for any j,k
 - (1) $E_i^{dag}E_k$ is in S

Or (2) $E_i^{dag}E_k$ anticommutes with one element of S

Stabilizer formalism

Stabilizer code [n,k]

 V_{s_i} the vector space stabilized by S, is of dimension 2^k, i.e. can encode k logical qubits The set of possible Errors E={E_k} that can be corrected are such that for any j,k (1) $E_j^{dag}E_k$ is in S Or (2) $E_j^{dag}E_k$ anticommutes with one element of S

QEC recipe: The code world is given by two orthonormal state of the vector space V_s Error Syndromes : Stabilizer measurements

Example The Bit-flip code is a [3,1] stabilizer code!

E={I,X₁,X₂,X₃} can be corrected by measuring the stabilizer generators S={Z₁Z₂,Z₂Z₃} The logical states are $|000\rangle$, $|111\rangle$ belong to the vector space V_S

Exercice Prove that the Steane code is a [7,1] stabilizer code.

The challenge of fault-tolerant quantum computing

A single QEC code does not protect against **any** error. (ex error X_1X_2 in the bit flip code..)

However, we may concatenate/combine several QEC codes to fight for error propagation provided the error probability per gate is below a certain threshold [Michael Ben-Or and Dorit Aharonov]

Fault-tolerant quantum computing = A significant technological challenge. Estimation : ~10 000 physical qubits per logical qubit for the surface code

J. Preskill « I've already emphasized repeatedly that it will probably be a long time before we have faulttolerant quantum computers solving hard problems. »

Physical qubits

Ancilla qubits \rightarrow perform stabilizer measurements All $Z_a Z_b Z_c Z_d$ and $X_a X_b X_c X_d$ (commuting operators)

Ref : https://arxiv.org/pdf/1208.0928.pdf

Error syndrome = pattern of stabilization results

phase flip F

bit flip

Initilization and operation

1) Measure all stabilizers \rightarrow Creates a logica state

2) Apply logical operations $X_L Z_L$ (Preserve the code world)

3) Check for errors by stabilizer measurements

Robustness of the logical qubit

QEC fails when the numbers of errors~system size d/2

Example : One error syndrome for two possible errors

Logical X error rate P_L

Fault-tolerance can be achieved by increasing the array size

Experimental implementation of a minimal surface code

https://arxiv.org/pdf/1912.09410.pdf

Preparation of the 0_L logical state

- \rightarrow start from 0⁴
- \rightarrow measure all ancillas in 0

Repeted error correction

Consequence : we need more physical qubits

Scaling IBM Quantum technology

Consequence : we need more physical qubits

Lecture 3 : Summary

QEC is a hot topic in modern quantum computing and **a key challenge** for quantum technologies

Fault-tolerant quantum computing requires many physical qubit per logical qubit

Surface codes implement QEC as 2D spin lattice models, which we also encounter in quantum simulation : Lecture 4

