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Quantum adiabatic theorem

   “A physical system remains in its instantaneous eigenstate if a given perturbation is acting on 
it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's 
spectrum” Born-Fock (1928)

Example:
Particle in a Harmonic trap

Instantaneous eigenstates:

Schrodinger equation:

Initial condition:

If evolution time slow enough (condition, see later)

https://ocw.mit.edu/courses/physics/8-06-quantum-physics-iii-spring-2018/lecture-notes/MIT8_06S18ch6.pdf



  

Quantum annealing (B. Apolloni, N. Cesa 
Bianchi and D. De Falco (1988)

Basic Idea: 
      1) Encode the solution of a ‘hard’ computational problem as the ground state of  a 

   classical Hamiltonian
      2) Prepare the ground-state physically via an adiabatic quantum machine
      3) Extract the solution by a projective measurement
     

Example: Max-Cut

Problem:
Given a graph, divide the nodes in two parts (white versus black), such 
as the number of edges between the two parts is maximal

Application: Group/Market opinions analysis, micro-
electronics

Complexity : NP-Hard



  

Quantum annealing with Max-Cut

Problem: Given a graph, divide the nodes in two parts (white versus 
black), such as the number of edges between the two parts is maximal

Step 1: Encoding

→ The solution is the ground-state       of a 
classical Ising model 

Step 2: Adiabatic state preparation

Step 3: Readout

For an adiabatic ramp



  

Quantum annealing with Max-Cut

Numerical illustration (with the Python toolbox QuTip)
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First steps towards quantum 
annealing

2011: D-wave quantum computing releases D-wave one
with 128 qubits! 

2014: Troyer and co-workers (ETH) show 
numerical evidence of quantum annealing 
with 108 qubits
But.. can also ‘simulate classically’ the 
whole process via Quantum Monte Carlo
Simulations..

D-wave Quantum 
Monte-
Carlo



  

First steps towards quantum 
annealing

http://arxiv.org/abs/1512.02206 → Google responds with D-wave 2X...

D-wave is promising, but are there fundamental limitations...

http://arxiv.org/abs/1512.02206


  

Limitation of quantum annealing:
quantum-phase transitions

https://arxiv.org/pdf/1903.06559.pdf

Adiabatic condition for a quantum Annealer:

Instantaneous ‘gap’

→ Performance of quantum annealing are governed by the size of the gap’



  

Limitation of quantum annealing:
quantum-phase transitions

https://arxiv.org/pdf/1903.06559.pdf

t

What is the size of the gap?

Quantum -
phase-transition

First order phase transition:  gaps closes exponentially with system size → HARD PROBLEM
Second-order phase transition: polynomial closure → DOABLE

(Transverse Ising Model)



  

Limitation of quantum annealing:
quantum-phase transitions

Current efforts:

Solution (1) Try to avoid first order phase transitions

Physical Review A9822314

1st order 
Phase 
Transition

1st order 
Phase 
Transition

Extra-control parameter
‘ideal path’

Solution (2) Go beyond abiabaticity: Quantum Approximate Optimization Algorithm (QAOA)



  

The quantum approximate 
optimization algorithm (E. Farhi 2014)

Problem (ex: Maxcut)

Step 1: Build a candidate for the solution via a quantum device

Step 2: Measure the cost-function 

Step 3: Feed the result into a classical optimization 
algorithm and try Step 1 with new parameters

The quantum device is used for ‘fast’ evaluation of a cost function, exploring many quantum paths



  

The quantum approximate 
optimization algorithm (E. Farhi 2014)

Example: Rigetti https://arxiv.org/pdf/1712.05771.pdf

Quantum annealing → QAOA: Promising for classical problems (ex: Max-Cut)
Can we solve quantum problems?



  

Solving quantum problems with 
quantum computers
1) Quantum Chemistry

Coulomb-term

Single-electron orbital

Nature Communications volume 5, Article number: 4213 (2014) 

Electron creation operator

Goal: Find Ground-State configuration of a molecule

https://www.nature.com/ncomms


  

Solving quantum problems with 
quantum computers

Translating quantum chemistry for quantum computers
Nature Communications volume 5, Article number: 4213 (2014) 

Step 1: Expression the Hamiltonian has a qubit Hamiltonian: Jordan-Wigner Transformation

Step 2: Find the ground-state by quantum-approximate-optimization-algorithm (In this 
context, it’s called Variational Quantum Eigensolver (VQE)

https://www.nature.com/ncomms


  

Solving quantum problems with 
quantum computers

https://arxiv.org/pdf/2004.04174.pdfIllustration with Google’s Sycamore

1 qubit = 1 
orbital

Preparation of a 
ground-state candidate

Energy
measurement

Repeat with different parameters



  

Conclusions on quantum 
optimization

Quantum
annealing

Quantum 
Approximate-
Optimization
Algorithm

Variational 
Quantum 
Eigensolver

Typical Problem:

Limitations:

Classical Classical Quantum

Scaling of 
the Gap

? ?

Can we solve other quantum problems?
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Quantum Simulators

A quantum machine that could imitate any quantum system, including the physical world

Richard Feynman

Quantum Simulation: Simulation of real quantum systems by implementing the relevant
Hamiltonian (in contrast to VQE)

Applications :  High-Tc superconductivity, High-energy Physics, Frustrated 
magnetism, Topological materials, etc



  

Quantum Simulators

First approach: Analog quantum simulation 
→ Physically realize a Hamiltonian (without a quantum computer) 

Example: Hubbard Model

- Model dynamics of valence electrons in solids

- Cannot be solved numerically in many cases

- Candidate to explain high-Tc superconductivity



  

Quantum Simulators

Solving the Hubbard Model via analog quantum simulation with ultra-cold atoms

M. Greiner’s Lab (Harvard)

Idea: Map electrons→ Fermionic ultracold 
atoms (ex Li6)

Laser cooling → Quantum degenerate Fermi Gas
Laser trapping→ Optical lattice
Interactions→ Atomic collisions

Physical Review Letters 81 (15), 3108 
(1998)

Readout→ Microscope

Result match, so far, with theory
without need for  quantum error correction



  

Quantum Simulators via Quantum 
Computers: Digital Quantum Simulation

Step 1: Mapping to a qubit Hamiltonian H
 (ex: Fermi-Hubbard → Spin  via Jordan-Wigner transformation)

Step 2: ‘Trotterized’ time-evolution via qubit gates

(Transverse Ising model)

Suzuki-Trotter expansion Error for a finite n (Lloyd, 1996) 

Requires polynomial time



  

Quantum Simulators via Quantum 
Computers: Digital Quantum Simulation

Sci. Adv.2019;5

Experimental demonstration 
with trapped ions (Lanyon 2011)



  

Quantum Simulation of high-
energy physics phenomena

Nature volume 534, pages516–519(2016)

Swinger Model 
(1 dimensional quantum-electro dynamics)

Digital quantum simulation

Illustration:

Kogut–Susskind fermions

Jordan-Wigner 
transformation

https://www.nature.com/nature


  

Summary: Quantum algorithms

● Quantum computers do exist and implement quantum circuits, following the 
dream of Feynman

● There are quantum algorithms that offer quantum speedup  (Grover, Shor, etc)

● Quantum error correction: conceptually `solved’, technical challenges

● New quantum algorithms that do not rely necessarily on quantum error 
correction: Quantum optimization/Quantum simulation

 → Quantum information meets many-body physics! 

A very active research field, many developments expected in the next year!
(talents needed)
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