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Introducing quantum simulation

• Feynmann original ideas related to quantum computers: ‘A quantum machine

that could imitate any quantum system, including the physical world’.

• Quantum simulation:

• A synthethic quantum device, for instance a quantum computer, that mimicks a

quantum system.

• The goal is to obtain from the quantum device information about the model, beyond

the possibilities of numerical simulations, and/or probe the associated physics

phenomena.

• In terms of an algorithm, the input is an Hamiltonian H, the output is the solution

|ψ〉 of the Schrödinger equation id |ψ〉 /dt = H |ψ〉, which is |ψ〉 = exp(−iHt) |ψ〉.
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Introducing quantum simulation

• In first approximation, there are two types of quantum systems:

• Fermionic/bosonic models: condensed matter systems (high-TC superconductivity,

impurity physics, disorder, fractional quantum Hall), high-energy physics (eg cavity

quantum electrodynamics, black holes).

• Spin models: relevant to study magnetism, quantum phase transitions, black holes.
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Introducing quantum simulation

• Example 1: The transverse Ising model

H =
∑
i<j

Ji ,jZiZj + g
∑
i

Xi (1)

• Very rich phase diagram, relevant in

particular for frustrated quantum

magnetism, quantum phase

transitions, etc.

• Eg Ising model on the triangular

lattice (A. Browaeys’s lab https:

//arxiv.org/pdf/2106.15530.pdf)
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Analog quantum simulation

• In analog quantum simulation, one

realizes the model Hamiltonian

H =
∑
i<j

Ji ,jZiZj +
∑
i

gXi

with spin particles implemented in the

quantum machine.

• Example with cold atoms:

• For each atom i , identify two

electronic levels |0〉, |1〉.
• Ji,jZiZj represents dipolar

interactions

• gXi is a laser-driven electronic

coupling. 7



Digital quantum simulation

• In digital quantum simulation, one ‘programs’ the model with a quantum

computer

• The goal is to simulate the Schrödinger equation, we need to implement the

quantum circuit U(t) = e−iHt with a universal set of gates.

H =
∑
i<j

Ji ,jZiZj +
∑
i

gXi

• Lloyd (1996): digital quantum simulation can be efficiently implemented in a

quantum computer, i.e, with a number of gates that scales polynomially with the

number of qubits and time.
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Digital quantum simulation

• Starting point to implement our circuit: Suzuki-Trotter decomposition

e−i(H1+H2)t = lim
m→∞

(
e−iH1t/me−iH2t/m

)m
• With for a fixed m, an error O(t2/m||[H1,H2||) (Lloyd, Science 1996).

• Exercice: Write the quantum circuit for a given m for the quantum Ising model

H =
∑
i<j

Ji ,jZiZj +
∑
i

gXi
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Digital quantum simulation of the transverse Ising model

•

e−iHt ≈

∏
i<j

UZiZj
(θi ,j)

∏
i

RXi
(φ)

m

(2)

with UZiZj
(θi ,j) = e−iθi,j (Zi⊗Zj )/2, θi ,j = 2Ji ,j t/m, RXi

(φ) = e−iφXi/2 and

φ = 2gt/m.

• where we have used that, for commuting operators A,B, eA+B = eAeB

10



Digital quantum simulation

• Example with three qubits, 1D nearest neighbor couplings:

RX1(φ)

UZ1Z2(θ1,2)

RX2(φ)

UZ2Z3(θ2,3)

RX3(φ)

m times
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Digital quantum simulation

• Various implementations over the last years with trapped ions and

superconducting qubits

• Example for cavity quantum electrodynamics (Martinez et al, Nature 2016 )

• Can we use analog/digital quantum simulation to prepare ground states, i.e |ψ(0)〉
such that ?

H |ψ(0)〉 = E (0) |ψ(0)〉 (3)

with the smallest possible E (0).
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Quantum optimization

• Quantum optimization aims at finding the groundstate |ψ(0)〉 of a ‘problem’

Hamiltonian H(0).

• The problem Hamiltonian can encode

• A classical problem (hard classical optimization problem)

• A quantum problem (physics model, quantum chemistry)

• Let us first describe the full strategy for trying to solve classical problems with

quantum computers.
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Hamiltonian encoding of classical problems

• Let us consider the NP-complete problem Max-Cut as example.

• Let G be a graph of n nodes with arbitrary connectivity Ji ,j = 0, 1

• Let us label the possible bi-partitions of this graph in terms of 2n bitstrings

x1, . . . , xn [The ‘state’ xi = 0 (= 1) means i belongs to the first (second

respectively) partition].

• Problem: What is the maximal possible number of ‘cuts’, i.e the maximal

numbers of pairs (i , j) such that Ji ,j = 1 and xi 6= xj .

1

2 3

5 4
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Hamiltonian encoding of classical problems

• This is one optimal solution x = (0, 0, 1, 0, 1), with max-cut=5.

1

2 3

5 4
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Hamiltonian encoding of classical problems

• Max-Cut is one of the NP-complete problems that can be mapped to a classical

Hamiltonian problem

• The ground state |ψ(0)
p 〉 of Hp =

∑
i<j Ji ,jZiZj is the solution of Max-Cut, because

Hp |x〉 =
(
#couplings(J) − 2#Cuts(x)

)
|x〉 (4)

• Definition: A ‘classical Hamiltonian’ is a Hamiltonian that is diagonal is the

‘computational basis’ {|x〉}.
• A quantum algorithm to find ground states of classical Hamiltonian: Quantum

annealing
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Quantum annealing relies on the quantum adiabatic theorem

• Let H(t) = h(t/τ), a time-dependent Hamiltonian, such that h(0) = He and

h(1) = Hp

• If I can prepare the quantum system in the groundstate of the ‘easy’ Hamiltonian

|ψ(t = 0)〉 = |ψ(0)
e 〉,

• Then it will end up approximately at time t = τ in the groundstate of the

‘problem’ Hamiltonian

|ψ(t = τ)〉 = |ψ(0)
p 〉 (5)

provided the adiabatic condition (see eg Messiah’s book on quantum mechanics)

τ � max
s∈[0,1]

(
〈ψ(0)(s)|ḣ(s)|ψ(1)(s)〉
|E (1)(s)− E (0)(s)|2

)
(6)

with (|ψ(k)(s)〉 ,E (k)(s)) the eigenstate decomposition of h(s).
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Quantum annealing algorithm of Ising models

1. Encode your problem in a classical Ising Hamiltonian Hp (as seen for Max-Cut)

2. Prepare the groundstate |ψ0)
e 〉 = (H |1〉)⊗n of the easy Hamiltonian He = g

∑
i Xi .

3. Evolve via analog or digital quantum simulation with

H(t) = (t/τ)Hp + (1− t/τ)He and measure the answer |x〉

|1〉⊗n . . .Hn e−iH(t1) e−iH(t2) e−iH(tη)
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Quantum annealing

• 2011, D-wave announces the first commercial quantum computer: a quantum

annealer with an analog quantum simulator made of superconducting qubits.

(wikipedia)

• But what of performances can we expect, compared with classical algorithms?
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Quantum annealing

• Adiabatic condition: Computation time τ scales as 1/∆2, with the ‘minimal gap’

∆ = mins [E (1)(s)− E (0)(s)].

• Going from an easy Hamiltonian He =
∑

i Xi to a problem Hamiltonian

Hp =
∑

i ,j Ji ,j , the qubits change macroscopically their configurations, a

phenomenon studied in condensed matter as quantum phase transitions.

quantum
critical

classical
critical

ordered
state

disordered
state

T

pQCP (wikipedia)

• The scaling of the gap with the problem size, the qubit number n, depends on the

nature of a quantum phase transition
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Quantum speedup with Rydberg atoms

• Farhi et al (arxiv:0201031.pdf): There are problems that require a polynomial

runtime with an adiabatic quantum computer, and that would require an

exponential time with simulated annealing (a classical algorithm of reference for

optimization problems).

• Troyer et al (Nature Physics 2014) quantum Monte carlo methods that simulate

the quantum annealing circuit with a classical computer.

• The question of quantum annealing being able to outperform all classical methods

is an open question.
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How does the gap scale?

Recent experiment with Rydberg atoms: observation of quantum speedup w.r.t

simulated annealing (arxiv:2202.09372, Science 2022)
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Solving quantum problems

• Maybe it’s easier to obtain quantum speedup for quantum problems?

• Quantum chemistry: Consider a molecule of B with b = 1 . . .B electrons. In the

Born-Oppenheimer, the nuclear coordinates R = (~Ra), a = 1 . . .A are ‘frozen’ and

we are looking for the groundstate of the electronic Hamiltonian

H(R) =
J∑

b=1

(
−1

2
∇2

b +
A∑

a=1

Zizj

|~Ra − ~rb|

)
+
∑
b<b′

zbzb′

|~rb − ~rb′ |
(7)
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Second quantization approach to quantum chemistry

• The quantum chemistry Hamiltonian is expressed in a finite basis of n single

electron orbitals φi (~r)

• We obtain the second quantized Hamiltonian

H(R) =
∑
i ,j

hi ,ja
†
i aj +

∑
i ,j

hi ,j ,k,la
†
i a
†
j akal (8)

where the fermionic operator a†i creates an electron in the orbital i .

• The tensor hi ,j , hi ,j ,k,l are one electron, two-electron orbital integrals that can be

calculated classically easily (e.g Google’s OpenFermion library)
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From electrons to qubits

H(R) =
∑
i ,j

hi ,ja
†
i aj +

∑
i ,j

hi ,j ,k,la
†
i a
†
j akal (9)

• The fermionic operators satisfy anti-commutation relations

{a†i , aj} = δi ,j , {ai , aj} = {a†i , a
†
j } = 0 (10)

• One approach to solve quantum chemistry on a quantum computer consists in

mapping fermions to qubits
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From electrons to qubits

• Jordan-Wigner transformation (Exercices 5): I can encode n fermionic orbitals on

n qubits via the transformation

ai = (
i−1∏
j=1

Zj)σi (11)

with σi = |0〉i 〈1|.
• I can find the ground state of the corresponding qubit Hamiltonian on a quantum

computer using quantum optimization.
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From quantum annealing to the variational quantum eigenvolver

• I can in principle do quantum annealing on the problem Hamiltonian Hp = H(R),

but we have the same type of limitations as for solving classical problems.

• One alternative: variational quantum eigensolver (VQE), our last quantum

algorithm (limitations are not yet understood. . . ) (Peruzzo et al, Nat. Comm.

2014)
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The variational quantum eigenvolver

• In VQE, one performs a closed loop classical optimization of variational quantum

circuits

|0〉⊗n U(~θ) u1 ⊗ · · · ⊗ un

Preparation Measurement

Update ~θ

• The choice of U(~θ) is non-trivial: I need to be able to generate with few number

of gates variational wavefunctions that are close to the ground state of the

problem Hamiltonian Hp

• Variant for classical problems: QAOA (Last quantum practical)
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The variational quantum eigenvolver

Example with Gradient descent

optimization

|0〉⊗n U(~θ) u1 ⊗ · · · ⊗ un

Preparation Measurement

Update ~θ

1. Prepare |ψ(~θ)〉 = U(~θ) |0〉⊗n and measure

〈ψ(~θ)| |Hp| |ψ(~θ)〉, using multiple rotations

bases u1, u2, . . . .

2. Do the same with ~θ → θ + d~θ

3. (On the classical computer): Compute gradient

of the energies ∂θi 〈ψ(~θ)| |Hp| |ψ(~θ)〉 via finite

difference.

4. Adjust the θ for gradient-descent. Go back to

step 1 until convergence

At the moment we do not know if we can if VQE can provide a quantum speedup as

the choice of U(~θ) is based on heuristics: Stay tuned!
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Quantum algorithms: Summary

• Quantum computers offer new complexity classes: the factorization problem can

be solved on a quantum computer with polynomial time!

• These systems are prone to errors. Achieving fault-tolerance quantum

computation is a significant technological challenge that may take decades.

• A new generation of quantum algorithms for quantum optimization:

Limitations/Complexity theory is not yet understood. . .

• Bonus lecture: Implementation of a quantum oracle for Grover’s search on SAT

problems, and the quantum supremacy claim by Google.
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