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Quantum simulation



Introducing quantum simulation

e Feynmann original ideas related to quantum computers: ‘A quantum machine
that could imitate any quantum system, including the physical world'.
e Quantum simulation:

e A synthethic quantum device, for instance a quantum computer, that mimicks a
quantum system.

e The goal is to obtain from the quantum device information about the model, beyond
the possibilities of numerical simulations, and/or probe the associated physics
phenomena.

e |n terms of an algorithm, the input is an Hamiltonian H, the output is the solution
|1) of the Schrédinger equation id [¢) /dt = H [¢), which is |¢)) = exp(—iHt) [¢)).



Introducing quantum simulation

e In first approximation, there are two types of quantum systems:

e Fermionic/bosonic models: condensed matter systems (high-TC superconductivity,
impurity physics, disorder, fractional quantum Hall), high-energy physics (eg cavity
quantum electrodynamics, black holes).

e Spin models: relevant to study magnetism, quantum phase transitions, black holes.



Introducing quantum simulation

Example 1: The transverse Ising model
H=> JijZiZi+gy X (1)
i<j i

Very rich phase diagram, relevant in
particular for frustrated quantum
magnetism, quantum phase

transitions, etc.

Eg Ising model on the triangular
lattice (A. Browaeys's lab https:
//arxiv.org/pdf/2106.15530.pdf)


https://arxiv.org/pdf/2106.15530.pdf
https://arxiv.org/pdf/2106.15530.pdf

Analog quantum simulation

In , one

realizes the model Hamiltonian
H= ZJ/JZ;Zj—FZgX,'
i<j i
with spin particles implemented in the

quantum machine.

Example with cold atoms:

e For each atom i, identify two

1).

e J;jZiZ; represents dipolar

electronic levels |0},

interactions
e gX; is a laser-driven electronic
coupling. 7



Digital quantum simulation

e In digital quantum simulation, one ‘programs’ the model with a quantum
computer

e The goal is to simulate the Schrodinger equation, we need to implement the
quantum circuit U(t) = e~'H* with a universal set of gates.

H=Y U,ZzZi+> eX;
i<j i

e Lloyd (1996): digital quantum simulation can be efficiently implemented in a
quantum computer, i.e, with a number of gates that scales polynomially with the

number of qubits and time.



Digital quantum simulation

e Starting point to implement our circuit: Suzuki-Trotter decomposition

. . . m
e—I(H1+H2)t — lim (e—/Hlt/me—/Hgt/m>
m—»00

e With for a fixed m, an error O(t?/ml||[H1, Ha||) (Lloyd, Science 1996).

e Exercice: Write the quantum circuit for a given m for the quantum Ising model

H=> J,ZZ+> eX

i<j i



Digital quantum simulation of the transverse Ising model

m
e M~ | [[Uzz(0:) [ Rx(9) (2)
i<j i
with Uz z/(0i;) = e 101i(Zi®Z))/2 0;j = 2Ji jt/m, Rx,(¢) = e—i9Xi/2 3nd
¢ =2gt/m.
o where we have used that, for commuting operators A, B, eATE = eAeB
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Digital quantum simulation

e Example with three qubits, 1D nearest neighbor couplings:

m times
Rx, (¢)
Uz 2,(012)
Rx,(¢) — —T
Uz,2;,(02,3)
Rx; () —

11



Digital quantum simulation

e Various implementations over the last years with trapped ions and
superconducting qubits

e Example for cavity quantum electrodynamics (Martinez et al, Nature 2016 )

T
‘ 0 Ty T T

e Can we use analog/digital quantum simulation to prepare ground states, i.e W(O)>
such that 7
H [%) = EO ) (3)
with the smallest possible £(0).
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Quantum optimization
Solving classical problems with quantum annealing

Solving quantum problems
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Quantum optimization

o Quantum optimization aims at finding the groundstate |1/(%)) of a ‘problem’
Hamiltonian H(©).
e The problem Hamiltonian can encode
e A classical problem (hard classical optimization problem)
e A quantum problem (physics model, quantum chemistry)
o Let us first describe the full strategy for trying to solve classical problems with

quantum computers.
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Hamiltonian encoding of classical problems

e Let us consider the NP-complete problem Max-Cut as example.

o Let G be a graph of n nodes with arbitrary connectivity J;; = 0,1

e Let us label the possible bi-partitions of this graph in terms of 2" bitstrings
X1,...,Xn [The ‘state’ x; = 0 (= 1) means i belongs to the first (second
respectively) partition].

e Problem: What is the maximal possible number of ‘cuts’, i.e the maximal
numbers of pairs (i,/) such that J; j =1 and x; # x;.
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Hamiltonian encoding of classical problems

e This is one optimal solution x = (0,0, 1,0, 1), with max-cut=5.
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Hamiltonian encoding of classical problems

Max-Cut is one of the NP-complete problems that can be mapped to a classical

Hamiltonian problem

The ground state \w,(go)> of Hp = >_;; JijZiZ; is the solution of Max-Cut, because

HP |X> - (#couplings(J) - 2#Cuts(x)) ‘X> (4)

Definition: A ‘classical Hamiltonian’ is a Hamiltonian that is diagonal is the

‘computational basis’ {|x)}.

A quantum algorithm to find ground states of classical Hamiltonian: Quantum

annealing
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Quantum annealing relies on the quantum adiabatic theorem

e If | can prepare the quantum system in the groundstate of the ‘easy’ Hamiltonian
0
(e = 0)) = v,
e Then it will end up approximately at time t = 7 in the groundstate of the
‘problem’ Hamiltonian

(e =) = [up”) (5)
provided the adiabatic condition (see eg Messiah's book on quantum mechanics)
(WO (s)[h(s)[wD(s))
6
i ( [E0)(s) — EO(s)P ©)

with (| (K)(s)), E(K)(s)) the eigenstate decomposition of h(s).
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Quantum annealing algorithm of Ising models

1. Encode your problem in a classical Ising Hamiltonian H, (as seen for Max-Cut)
2. Prepare the groundstate \w2)> = (H|1))®" of the easy Hamiltonian He = g >_; X:.

3. Evolve via analog or digital quantum simulation with
H(t) = (t/7)Hp + (1 — t/7)He and measure the answer |x)

D) H" [ e [ e | -] o) |
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Quantum annealing

e 2011, D-wave announces the first commercial quantum computer: a quantum
annealer with an analog quantum simulator made of superconducting qubits.

(wikipedia)

e But what of performances can we expect, compared with classical algorithms?
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Quantum annealing

e Adiabatic condition: Computation time 7 scales as 1/A2, with the ‘minimal gap’
A = ming[EM(s) — EQ)(s)].

e Going from an easy Hamiltonian He = ) ; X to a problem Hamiltonian
H, = Zi,j Jij, the qubits change macroscopically their configurations, a

phenomenon studied in condensed matter as quantum phase transitions.
T

quantum
critical
classical
critical
ordered
state

\ /  disordered
state

P p (wikipedia)
e The scaling of the gap with the problem size, the qubit number n, depends on the
nature of a quantum phase transition
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Quantum speedup with Rydberg atoms

o Farhi et al (arxiv:0201031.pdf): There are problems that require a polynomial
runtime with an adiabatic quantum computer, and that would require an
exponential time with simulated annealing (a classical algorithm of reference for
optimization problems).

o Troyer et al (Nature Physics 2014) quantum Monte carlo methods that simulate
the quantum annealing circuit with a classical computer.

e The question of quantum annealing being able to outperform all classical methods

is an open question.
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How does the gap scale?

Recent experiment with Rydberg atoms: observation of quantum speedup w.r.t
simulated annealing (arxiv:2202.09372, Science 2022)
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Solving quantum problems

e Maybe it’s easier to obtain quantum speedup for quantum problems?

e Quantum chemistry: Consider a molecule of B with b=1... B electrons. In the
Born-Oppenheimer, the nuclear coordinates R = (R,), a=1...A are ‘frozen’ and
we are looking for the groundstate of the electronic Hamiltonian

J 1_, A sz ZpZp
H(R) =) —5Vi+ Z - + ) Tl (7)

—1 |Ra — 7] b<b/
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Second quantization approach to quantum chemistry

e The quantum chemistry Hamiltonian is expressed in a finite basis of n single
electron orbitals ¢;(r)

e We obtain the second quantized Hamiltonian

H(R) = Z h,-vja}Laj + Z h,-J’k,,a:-ra}raka, (8)
i iJ

where the fermionic operator ajf creates an electron in the orbital /.

o The tensor h;j, h; ;s are one electron, two-electron orbital integrals that can be
calculated classically easily (e.g Google's OpenFermion library)
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From electrons to qubits

Zh,daaj—i—Zh’Jk,aaaka/ (9)

e The fermionic operators satisfy anti-commutation relations

{al,a;} =0ij, {aia} ={al,al} =0 (10)

e One approach to solve quantum chemistry on a quantum computer consists in
mapping fermions to qubits
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From electrons to qubits

e Jordan-Wigner transformation (Exercices 5): | can encode n fermionic orbitals on
n qubits via the transformation

ai = ([[2)ai (11)
with o; = |0); (1].

e | can find the ground state of the corresponding qubit Hamiltonian on a quantum
computer using quantum optimization.
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From quantum annealing to the variational quantum eigenvolver

e | can in principle do quantum annealing on the problem Hamiltonian H, = H(R),
but we have the same type of limitations as for solving classical problems.

e One alternative: variational quantum eigensolver (VQE), our last quantum
algorithm (limitations are not yet understood. ..) (Peruzzo et al, Nat. Comm.
2014)
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The variational quantum eigenvolver

e In VQE, one performs a closed loop classical optimization of variational quantum

circuits
Preparation Measurement
10)°" U(6) (i@ ® u,
T Update § |

—

e The choice of U() is non-trivial: | need to be able to generate with few number
of gates variational wavefunctions that are close to the ground state of the
problem Hamiltonian H,

e Variant for classical problems: QAOA (Last quantum practical)

29



The variational quantum eigenvolver

Example with Gradient descent

optimization

Preparation Measurement
0)*" u(8) TR
T Update q |

1.

—

Prepare [4(6)) = U(0) |0)®" and measure

(¥(0)| |Hp| 1%(0)), using multiple rotations
bases uq, us, .. ..

_ Do the same with § — 6 +di

(On the classical computer): Compute gradient
of the energies 90; (1)(0)] |Hp| |4(8)) via finite
difference.

Adjust the 6 for gradient-descent. Go back to

step 1 until convergence

At the moment we do not know if we can if VQE can provide a quantum speedup as

—

the choice of U(#) is based on heuristics: Stay tuned! 30



Quantum algorithms: Summary

e Quantum computers offer new complexity classes: the factorization problem can
be solved on a quantum computer with polynomial time!

e These systems are prone to errors. Achieving fault-tolerance quantum
computation is a significant technological challenge that may take decades.

e A new generation of quantum algorithms for quantum optimization:
Limitations/Complexity theory is not yet understood. ..

e Bonus lecture: Implementation of a quantum oracle for Grover's search on SAT
problems, and the quantum supremacy claim by Google.
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