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Implementing a quantum oracle



Grover's oracle: Reminder

e Problem given a n-bit Boolean function f(x) . Find the solution x = w such that
flw)=1
e The quantum algorithm is given by
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Grover's oracle: Reminder

o Grover's algorithm converges to the solution for t oc /N = 27.

e The diffuser Uy = 2|¢)) (1| — 1 can be implemented with the Toffoli gate

e How can we implement an oracle Uy |x) = (—1)"™) |x)? (without knowing the
solution w...)?

e Let us show that this is sometimes possible using elementary bitstring operations
and the technique of ‘uncomputation’.



Case study: p-SAT Problem

e p-SAT: Given n bits, we are looking for the bit strings x = (x1, ..., x,) that satisfy
the Boolean function
f(x)=CG(x)A--- A Cu(x), (1)
where A is a conjunction (AND).
o Each clause C,(x) is made of a disjunction (OR: V) of at most p litterals.

o Example with M =3,n=2,p=2
f(x)=(xaVx)A(x1V-x)A(—x1Vx) (2)

e 3-SAT is NP-Complete.



Implementing a Grover’s oracle for 2-SAT

e Oracle Ur |x) = (—1)f™) |x) with f(x) = (x1 V x2) A (x1 V =x2) A (=x1 V x0)
e Step 1: Use de Morgan's law AV B = =(-A A —B)

f(x) = =(=x1 A =x2) A =(—=x1 A x2) A =(x1 A —x2) (3)



Implementing a Grover’s oracle for 2-SAT

e Step 2: Add one ancilla qubit and Tofolli gates to test each clause

[x) ®1000) — |x) @ [C1(x)) [ Ca(x)) [ CG3(x)) (4)
[x1)
[x2)
1)—® |G (x))
1) s> [ Ca(x))
1) b |G3(x))




Implementing a Grover’s oracle for 2-SAT

e Step 3: Add an extra ancilla bit for performing the conjunctions between clauses

and ‘uncompute’ the first ancilla qubits

) 1) 2M1y) = [x) [1)#M |y @ £(x)) (5)
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e If the last ancilla is flipped, f(x) =1, i.e., we can mark the solution!



Implementing a Grover’s oracle for 2-SAT

o All ancilla qubits except one have been uncomputed, we have effectively realized a
XOR oracle

x) @ ly) = x) @y @ f(x)) (6)

e How to realize a phase oracle, as required for Grover's oracle, from a XOR oracle?

) = (=1)" |x) (7)



Implementing a Grover’s oracle for 2-SAT

e XOR to phase oracle conversion: Simply initialize the last ancilla using the H gate
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Implementing a Grover’s oracle for 2-SAT

e We obtain

DM (HIL) = Ix >\1>®M(I0@f( )) = 1@ f(x)))
= DM (=1)(j0) — 1))
= (1)) )M (H1) (8)

e which effectively realizes our oracle (and uncomputes the last ancilla)!
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The full circuit

e Problem function:
f(x)=(x1Vx2)A(x1V—x2)A(—x1V x2)

e Circuit
" X
w

(10)
&—{H —A—

e Qiskit output: bistring 11 with probability 1.0: | coded the problem without
knowing the solution, then the algorithm gives me the solution.
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Recent experimental breakthroughs with quantum computers
Presentation of a superconducting qubit quantum computer

The quantum supremacy experiment (Arute et al, 2019)
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How does it work?

Superconducting material4-Josephson junctions

— 53 ‘anharmonic oscillators’ h; = woaja,- + Ua;ra,-(aja,- -+...
— Reviews by Devoret, Girvin, etc

Cool to 20 mK temperature via a dilution fridge

We can control the qubit |0);,|1); = a;r |0); with 'single qubit gates’.
iSwap gates between qubits U;j = el(r/Motajtaio])
Each qubit can be measured.

We have a universal quantum computer: Every N-qubit state (dim 2’V) can be
created and measured (Deutsch 1989).

[v) = Z Cspypsy [51) ® -+ ® |sw) (11)

S15000,SN

14



b Single-qubit gate:
25ns

Qubit
"'—D—D— “ 7| XY control

.- - Two-qubit gate:
12ns
Qubit1 _ <
5| Zeontol T\ [T

Coupler —,_\—

Qubit2 _/~\___
) L

Z control

Programming a quantum computer
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The quantum computing roadmap

e Long-terms goals: Quantum algorithms to solve hard problems

e Data search (Grover's 1996)
e Factorization (Shor's 1995)
e Large-scale optimization problems (on-going debate)

e Outstanding conceptual/technological challenges

e Error propagation is typically exponential in problem size
e Sophisticated algorithms for ‘quantum error correction’ required to achieve fault
tolerance.

e Massive investments (USA, China, Europe, etc) are helpful, but should not hide

conceptual challenges (‘quantum hype’).

e We need verification methods to validate technological progress
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What is this about?

o It will probably take years before we can run a quantum algorithm solving an open
problem in computer science.

e An important milestone is to check that a quantum computer is able to perform a
computation that is not achievable via a classical computer with reasonable
resources (Preskill 2012).

e Two important conceptual questions

e How can | check something that | cannot compute?
e How can | explore an gigantic Hilbert space of dimension 253 ~ 10'® with a finite

number of measurements?
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The supremacy test

Idea

e Use random circuits that are difficult to simulate classically for N > 50

e Make use of random matrix theory to create a faithful figure of merit, based on
measuring the system in terms of ‘bitstrings’ (ex s = 01001...).

Single-qubit gate:
= 25ns
P

——— _ Qubit
“ 7| XY control

— Two-qubit gate:
12 ns
Qubit1

5] Zeonwol T\ [

____________ A = Coupler = L —
Rgw  ao0lumn A B c Qubitz _
Time e Z control
Cycle 1 2 3 4 5 6
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The supremacy test

Algorithm
1. Consider a reduced or ‘shallow’ circuit U that | can compute classically.

1.1 Implement |¢) = U |0)*V
1.2 Measure M < 2V bitstrings {sn,} (sampled ideally according to P(s) = | (s|t[|)?).

1.3 Evaluate the fidelity based on computing

ov MU
FXEB = m ,; P(sm) —1 (12)
2. Consider a non-simulatable ‘supremacy’ circuit U

2.1 Measure the bitstrings {s;,} as above
2.2 Archive the results, waiting for the classical computer to ‘catch up’ and allow for the

evaluation of the fidelity.
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The test is meaningful

e For sufficiently large M,

2N—1 M

1_2"’2255,\;"”/3 1N2’VZ 13)
=0 m=1

e For a random circuit this sum can be calculated analytically.

2N

FXEB = m

Mz

m=1
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The test is meaningful

For sufficiently large N,
Fxep ~ 2V Y P(s)? =1~ 22M(P(s)?) — 1 (14)

Prob(P(s) € [p, p+ dp]) = 2V exp(—2"p)dp (15)

In average, (P(s)) = 27N, as for a uniform distribution Pu;(s) = 27",
2 _ 2N

However (P(s)?) =2 x 272N twice compared to Pyy;i(s)

Therefore, Fxgp = 1. For uniform distribution, we get instead Fxgg = 0.

Fast convergence of the estimation of Fxgp with ~ 10° measurements.
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Results
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Classical verification
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— Prediction from gate and measurement errors
O Full circuit X Elided circuit +Patch circuit

Sycamore sampling (N = 109: 200 s

2h Classical sampling at Fs,,

2 weeks

1 week

10,000 yr

n =53 qubits
‘r_ Prediction

. X Elided (50 error bars)

|
| + Patch

10

15 20 25 30 35 40 45 50 55

Number of qubits, n

12 14 16 18 20
Number of cycles, m

22



Conclusion

e A remarkable technological achievement.
e Exponential propagation of errors. This was expected

e The power of classical simulations was underestimated (see eg X. Waintal et al,
PRX 2020).

23



	Implementing a quantum oracle
	Recent experimental breakthroughs with quantum computers
	Presentation of a superconducting qubit quantum computer
	The quantum supremacy experiment (Arute et al, 2019)


