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Grover’s oracle: Reminder

• Problem given a n-bit Boolean function f (x) . Find the solution x = w such that

f (w) = 1

• The quantum algorithm is given by

|0⊗n〉 H⊗n Uf Ud

t times
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Grover’s oracle: Reminder

• Grover’s algorithm converges to the solution for t ∝
√
N = 2n.

• The diffuser Ud = 2 |ψ〉 〈ψ| − 1 can be implemented with the Toffoli gate

• How can we implement an oracle Uf |x〉 = (−1)f (x) |x〉? (without knowing the

solution w . . . )?

• Let us show that this is sometimes possible using elementary bitstring operations

and the technique of ‘uncomputation’.
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Case study: p-SAT Problem

• p-SAT: Given n bits, we are looking for the bit strings x = (x1, . . . , xn) that satisfy

the Boolean function

f (x) = C1(x) ∧ · · · ∧ CM(x), (1)

where ∧ is a conjunction (AND).

• Each clause Cm(x) is made of a disjunction (OR: ∨) of at most p litterals.

• Example with M = 3, n = 2, p = 2

f (x) = (x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) (2)

• 3-SAT is NP-Complete.
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Implementing a Grover’s oracle for 2-SAT

• Oracle Uf |x〉 = (−1)f (x) |x〉 with f (x) = (x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2)

• Step 1: Use de Morgan’s law A ∨ B = ¬(¬A ∧ ¬B)

f (x) = ¬(¬x1 ∧ ¬x2) ∧ ¬(¬x1 ∧ x2) ∧ ¬(x1 ∧ ¬x2) (3)
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Implementing a Grover’s oracle for 2-SAT

• Step 2: Add one ancilla qubit and Tofolli gates to test each clause

|x〉 ⊗ |000〉 → |x〉 ⊗ |C1(x)〉 |C2(x)〉 |C3(x)〉 (4)

|x1〉

|x2〉

|1〉 |C1(x)〉

|1〉 |C2(x)〉

|1〉 |C3(x)〉
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Implementing a Grover’s oracle for 2-SAT

• Step 3: Add an extra ancilla bit for performing the conjunctions between clauses

and ‘uncompute’ the first ancilla qubits

|x〉 |1〉⊗M |y〉 → |x〉 |1〉⊗M |y ⊕ f (x)〉 (5)

|x1〉

|x2〉

|1〉 |1〉

|1〉 |1〉

|1〉 |1〉

|y〉
• If the last ancilla is flipped, f (x) = 1, i.e., we can mark the solution! 8



Implementing a Grover’s oracle for 2-SAT

• All ancilla qubits except one have been uncomputed, we have effectively realized a

XOR oracle

|x〉 ⊗ |y〉 → |x〉 ⊗ |y ⊕ f (x)〉 (6)

• How to realize a phase oracle, as required for Grover’s oracle, from a XOR oracle?

|x〉 → (−1)f (x) |x〉 (7)

9



Implementing a Grover’s oracle for 2-SAT

• XOR to phase oracle conversion: Simply initialize the last ancilla using the H gate

|x1〉

|x2〉

|1〉

|1〉

|1〉

|1〉 H
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Implementing a Grover’s oracle for 2-SAT

• We obtain

|x〉 |1〉⊗M (H |1〉) → |x〉 |1〉⊗M (|0⊕ f (x)〉 − |1⊕ f (x)〉)
→ |x〉 |1〉⊗M (−1)f (x)(|0〉 − |1〉)
→ (−1)f (x) |x〉 |1〉⊗M (H |1〉) (8)

• which effectively realizes our oracle (and uncomputes the last ancilla)!

|x〉 → (−1)f (x) |x〉 (9)
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The full circuit

• Problem function:

f (x) = (x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) (10)

• Circuit

• Qiskit output: bistring 11 with probability 1.0: I coded the problem without

knowing the solution, then the algorithm gives me the solution.
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How does it work?

• Superconducting material+Josephson junctions

→ 53 ‘anharmonic oscillators’ hi = ω0a
†
i ai + Ua†i ai (a

†
i ai − 1) + . . .

→ Reviews by Devoret, Girvin, etc

• Cool to 20 mK temperature via a dilution fridge

• We can control the qubit |0〉i , |1〉i = a†i |0〉i with ‘single qubit gates’.

• iSwap gates between qubits Ui ,j = e i(π/4)(σ
x
i σ

x
j +σ

y
i σ

y
j )

• Each qubit can be measured.

• We have a universal quantum computer: Every N-qubit state (dim 2N) can be

created and measured (Deutsch 1989).

|ψ〉 =
∑

s1,...,sN

cs1,...,sN |s1〉 ⊗ · · · ⊗ |sN〉 (11)
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Programming a quantum computer
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The quantum computing roadmap

• Long-terms goals: Quantum algorithms to solve hard problems

• Data search (Grover’s 1996)

• Factorization (Shor’s 1995)

• Large-scale optimization problems (on-going debate)

• Outstanding conceptual/technological challenges

• Error propagation is typically exponential in problem size

• Sophisticated algorithms for ‘quantum error correction’ required to achieve fault

tolerance.

• Massive investments (USA, China, Europe, etc) are helpful, but should not hide

conceptual challenges (‘quantum hype’).

• We need verification methods to validate technological progress
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What is this about?

• It will probably take years before we can run a quantum algorithm solving an open

problem in computer science.

• An important milestone is to check that a quantum computer is able to perform a

computation that is not achievable via a classical computer with reasonable

resources (Preskill 2012).

• Two important conceptual questions

• How can I check something that I cannot compute?

• How can I explore an gigantic Hilbert space of dimension 253 ∼ 1015 with a finite

number of measurements?
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The supremacy test

Idea

• Use random circuits that are difficult to simulate classically for N > 50

• Make use of random matrix theory to create a faithful figure of merit, based on

measuring the system in terms of ‘bitstrings’ (ex s = 01001 . . . ).
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The supremacy test

Algorithm

1. Consider a reduced or ‘shallow’ circuit U that I can compute classically.

1.1 Implement |ψ〉 = U |0〉⊗N

1.2 Measure M � 2N bitstrings {sm} (sampled ideally according to P(s) = | 〈s|ψ||〉2).

1.3 Evaluate the fidelity based on computing

FXEB =
2N

M

M∑
m=1

P(sm)− 1 (12)

2. Consider a non-simulatable ‘supremacy’ circuit U

2.1 Measure the bitstrings {sm} as above

2.2 Archive the results, waiting for the classical computer to ‘catch up’ and allow for the

evaluation of the fidelity.
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The test is meaningful

• For sufficiently large M,

FXEB =
2N

M

M∑
m=1

P(sm)−1 = 2N
2N−1∑
s=0

M∑
m=1

δs,sm
M

P(s)−1 ≈ 2N
2N−1∑
s=0

P(s)2−1 (13)

• For a random circuit this sum can be calculated analytically.
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The test is meaningful

For sufficiently large N,

FXEB ≈ 2N
2N−1∑
s=0

P(s)2 − 1 ≈ 22N〈P(s)2〉 − 1 (14)

Prob(P(s) ∈ [p, p + dp]) = 2Nexp(−2Np)dp (15)

• In average, 〈P(s)〉 = 2−N , as for a uniform distribution Puni(s) = 2−N .

• However 〈P(s)2〉 = 2× 2−2N , twice compared to Puni(s)2 = 2−2N !

• Therefore, FXEB = 1. For uniform distribution, we get instead FXEB = 0.

• Fast convergence of the estimation of FXEB with ∼ 106 measurements.
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Results
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Conclusion

• A remarkable technological achievement.

• Exponential propagation of errors. This was expected

• The power of classical simulations was underestimated (see eg X. Waintal et al,

PRX 2020).
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