Introduction to quantum computing

Lecture 1: From classical to quantum computers

Benoît Vermersch
March 28, 2024

LPMMC Grenoble

Outline

From classical to quantum computers

Lecture 1: Quantum circuits
Single qubit states/gates
Two qubit gates and universal quantum computing

Outline

From classical to quantum computers

Lecture 1: Quantum circuits

Single qubit states/gates
Two qubit gates and universal quantum computing

Some tough problems for classical computers

- Integer factorization: $N=a b$.
- Search algorithms: $f(x=w)=1, f(x \neq w)=0$. Find w.
- Optimization problems: Given a cost function $f(x)$, find x that maximizes $f(x)$

- Quantum problems: quantum chemistry, superconductivity, etc \rightarrow solve large-scale Schrödinger equation

Basic concepts of computer science

- A useful model for computers: circuits of logical gates acting on binary numbers.
- AND gate: $a^{\prime}=a b \rightarrow$ Truth table: | | a | b | a^{\prime} |
| :--- | :--- | :--- | :--- |
| | 0 | 0 | 0 |
| | 1 | 1 | 0 |
| | 1 | 0 | 0 |
| | | 1 | 1 |
- OR gate: $a^{\prime}=a+b \rightarrow$ Truth table: ...
- XOR gate: $a^{\prime}=a \oplus b \rightarrow$ Truth table: ...
- Combining gates, we obtain logical circuits, eg Half-adder

Basic concepts of computer science

- Reversible circuits: $\left(a^{\prime}, b^{\prime}\right)=f(a, b)$, with f invertible.
- Reversible XOR gate (known as CNOT in quantum computing)
- $a^{\prime}=a, b^{\prime}=a \oplus b$
- Remark: the second 'target' bit is flipped iff the first 'control' bit is activated ($a=1$).
- Useful notations for later

Basic concepts of computer science

- Universality in reversible computing: Can I write using a finite set of gates an arbitrary reversible circuit $f,\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)=f\left(a_{1}, \ldots, a_{n}\right)$?
- The Toffoli gate is universal

Complexity classes

Complexity: scaling of resources to solve a decision problem (yes/no answer) with a classical computer (rigorously, for a deterministic Turing machine)
$\left.\begin{array}{|l|l|}\hline \text { P } & \begin{array}{l}\text { Solved in polynomial time, i.e., } \\ \text { the required number of operations is a polynomial of a problem size } \\ \text { NP }\end{array} \\ \text { A yes answer verified in polynomial time }\end{array}\right\}$ Solved with polynomial size (i.e number of constituents, bits)

Example of a NP-complete problem: 3-SAT

$$
\begin{aligned}
&(\bar{a} \vee m \vee u) \wedge(a \vee n \vee u) \wedge(\bar{a} \vee r \vee x) \wedge(\bar{c} \vee \bar{e} \vee s) \\
& \wedge(c \vee \bar{m} \vee \bar{w}) \wedge(\bar{c} \vee p \vee x) \wedge(c \vee q \vee s) \wedge(e \vee p \vee s) \\
& \wedge(e \vee q \vee \bar{y}) \wedge(e \vee r \vee y) \wedge(\bar{e} \vee r \vee z) \wedge(\bar{g} \vee r \vee x) \\
& \wedge(g \vee v \vee \bar{y}) \wedge(m \vee \bar{n} \vee u) \wedge(m \vee \bar{o} \vee \bar{u}) \wedge(m \vee o \vee v) \\
& \wedge(\bar{m} \vee \bar{q} \vee s) \wedge(\bar{m} \vee \bar{r} \vee \bar{s}) \wedge(m \vee \bar{u} \vee \bar{v}) \wedge(\bar{m} \vee x \vee \bar{z}) \\
& \wedge(\bar{n} \vee r \vee \bar{y}) \wedge(o \vee r \vee \bar{w}) \wedge(\bar{p} \vee q \vee s) \wedge(r \vee \bar{w} \vee \bar{x}) \\
& \wedge(r \vee w \vee \bar{y}) \wedge(r \vee w \vee \bar{z})
\end{aligned}
$$

source:Wikipedia

Relations between complexity classes

- Conjecture $\mathrm{P} \neq \mathrm{NP}$
- BQP (Bounded error quantum polynomial time) is the class associated with quantum computers
- We believe that $P \neq B Q P$, ie quantum computers may be useful!

Example: Integer factorization

- Factorization decision problem (F): can a given n-bit number be factorized?
- No polynomial time algorithm known: We do not know if F is in P
- Solutions can be checked efficiently: F is in NP
- Shor's algorithm (1995): F is in BQP

- Quantum computers may be able to tackle problems that are hard for classical computers!

From classical to quantum computers in the quantum circuit model

Classical computers use classical bits

- One classical bit: $\stackrel{\bullet}{-}$
\rightarrow state in 0 or 1
- n classical bits: $\bullet \bullet$
$\rightarrow 2^{n}$ possibilities for the state (00...00, $00 \ldots 01$, etc)

Quantum computers use qubits

- One qubit:

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle
$$

- n qubits:

$|\psi\rangle=c_{0 \ldots 0}|0 \ldots 0\rangle+c_{0 \ldots 1}|0 \ldots 1\rangle+\ldots$. The quantum state can be simulatenously in all the 2^{n} classical states.

Why we may expect quantum speedup with quantum parallelism

- Unstructured search on a space of 2^{n} bitstrings: We look for x, such that $f\left(x=x_{1}, \ldots, x_{n}\right)=1$.
- Optimal classical algorithm: Random testing, with time complexity $O\left(2^{n}\right)$
- Optimal quantum algorithm: Grover's algorithm (Lecture 2)

- The first quantum gate creates a uniform quantum superposition of all bitstring states
- Complexity $O\left(\sqrt{2^{n}}\right)$: polynomial improvement (but still exponential scaling).
- Note: Quantum parallelism does not guarantee quantum speedup for solving anything: One needs to extract relevant classical information from the quantum superposition state.

Quantum Computing timeline

- 1980-1981: Concepts of quantum computers (Benioff-Manin-Feynman)
- 1985: Deutsch's universal quantum computer
- 1994: Shor's factoring algorithm
- 1995: Shor proposes quantum error correction
- 1995: First realization of a 2 qubit gate with trapped ions (Wineland)
- 1996: Grover's algorithm
- 2001: 15 is factorized with Shor's algorithm
- 2008: D-Wave Systems propose the first commercially available "quantum computer"
- 2019: Quantum supremacy claim by Google with 53 qubits
- 2021: IBM quantum eagle (127 qubits)
- 2023: First "large" "low-depth" logical quantum processor (Harvard \& QuEra)

Physical realizations: quantum hardware

- Superconducting qubits (Google, IBM, Rigetti, Grenoble, ...)
- Trapped ions (Innsbruck, Duke university, Boulder NIST, IonQ, ...).
- Rydberg atoms (Palaiseau, Pasqal, Harvard, ...)
- Electron spins (Delft, Microsoft, Grenoble, ...)

IBMQ Practicals

- We will use via a cloud interface 'small' IBM quantum computers to illustrate the lectures.
- We will use the Qiskit Python library to parametrize simulate quantum circuits and interface with the quantum machines.
- Before the class, connect to https://github.com/bvermersch/ bvermersch.github.io/blob/master/ Teaching/QuantumPractical.ipynb for install instructions.

Resources

- Nielsen and Chuang, Quantum Computation and Quantum Information
- J. Preskill's quantum information lectures, http://theory.caltech.edu/~preskill/
- Scott's Aaronson lectures.
- Lectures slides on https://bvermersch.github.io/

Outline

From classical to quantum computers

Lecture 1: Quantum circuits
Single qubit states/gates
Two qubit gates and universal quantum computing

Single qubit states

- For this course, the qubit can be thought as the elementary building block of a quantum computer.
- A qubit is a two-level quantum system

$$
\begin{equation*}
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta} \tag{1}
\end{equation*}
$$

- Sometime it is instructive to represent a qubit as a vector on the Bloch sphere

$$
|\psi\rangle=\cos \left(\frac{\theta}{2}\right)|0\rangle+\sin \left(\frac{\theta}{2}\right) e^{i \phi}|1\rangle
$$

(2)

Single qubit quantum circuit

- In single qubit quantum circuits, the qubit states evolves as a function of time, by successive applications of single qubit gates

- After the first gate, we obtain

$$
\begin{equation*}
\left|\psi_{1}\right\rangle=U_{1}|\psi\rangle \tag{3}
\end{equation*}
$$

with $U_{1}=e^{-i H_{1} t}$ is a unitary 2×2 matrix (a rotation on the Bloch sphere)

- Can you write the final state of the circuit as a function of U_{1}, U_{2}, U_{3} ?

Important single qubit gates

- Note: It is important to get used to calculate the states of quantum circuits both using the matrix and the bra-ket notations

X-gate	$X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \quad X=\|0\rangle\langle 1\|+\|1\rangle\langle 0\|$
Z-gate $-Z \quad Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right) \quad Z=\|0\rangle\langle 0\|-\|1\rangle\langle 1\|$	
Y-gate $Y=Y=i X Z$	

Hadamard-gate $H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)$
T-gate $T=\left(\begin{array}{cc}1 & 0 \\ 0 & e^{i \pi / 4}\end{array}\right)$
and others..

- Can you generate the Hadamard gate with a circuit with X and Z gates? why?

Multi-qubit circuit structure

- A quantum circuit naturally extends to $n \geq 1$ qubits
- The wave-function is written in a tensor product space of dimension 2^{n}

$$
|\psi\rangle=\sum_{x_{1}=0}^{1} \sum_{x_{2}=0}^{1} \cdots \sum_{x_{n}=0}^{1} c_{x_{1}, x_{2} \ldots, x_{n}}\left|x_{1}\right\rangle \otimes\left|x_{2}\right\rangle \otimes \cdots \otimes\left|x_{n}\right\rangle=\left(\begin{array}{c}
c_{0,0, \ldots, 0} \tag{4}\\
c_{0,0} \ldots, 0,1 \\
\ldots \\
c_{1,1 \ldots 1,1}
\end{array}\right)
$$

- Equivalence between notations :

$$
|0,1,1\rangle=|011\rangle=|0\rangle \otimes|1\rangle \otimes|1\rangle,|0\rangle \otimes|0\rangle=|0\rangle^{\otimes 2}
$$

Multi-qubit circuit structure

- Let us calculate the state after the following two-qubit circuit?

- Playing with bra-kets and tensor products

$$
\begin{equation*}
|\psi\rangle=(H \otimes H)(|0\rangle \otimes|0\rangle)=(H|0\rangle) \otimes(H|0\rangle)=\ldots \tag{5}
\end{equation*}
$$

- I can also first write H in bra-ket notations then write $H \otimes H$ in bra-ket notations, or in matrix form, etc, but it's more tedious.
- Is this state entangled?

Introducing two-qubit gates

- Two qubit gates act non-trivially on two qubits
- Example CNOT gate

$$
\begin{equation*}
\text { CNOT }=|0\rangle\langle 0| \otimes 1+|1\rangle\langle 1| \otimes X \tag{6}
\end{equation*}
$$

- Example Controlled-Z gate

The universal quantum computer

- Deutsch 1985: There exist universal set of gates that can be used to generate any quantum circuit U acting on n qubits.
- Note: The question of how many gates you need is non-trivial (quantum computational complexity)
- The following gate set is universal

- It is usually a good idea to use a larger gate set to simplify the circuit compilation.
- Write a circuit to create a Bell State, a three qubit GHZ state.

Bell state circuit

Circuit to prepare the Bell state

The measurement problem

- Reminer on von Neumann measurements in quantum mechanics
- Let us define a list of orthogonal projectors $\left\{P_{a}\right\}$, with $\sum_{a} P_{a}=1$
- We define a measurement of a as the physical operation

$$
\begin{equation*}
P_{a}|\psi\rangle / \| P_{a}|\psi\rangle \| \tag{8}
\end{equation*}
$$

- And we postulate that this happens with probability $p_{a}=\langle\psi| P_{a}|\psi\rangle$.

Computational bases measurements

- This is the standard way of measuring in quantum computers

$$
\begin{equation*}
P_{x}=|x\rangle\langle x| \tag{9}
\end{equation*}
$$

with $x=x_{1}, \ldots, x_{n}$ and

$$
\begin{equation*}
p(x)=|\langle\psi \mid x\rangle|^{2} \tag{10}
\end{equation*}
$$

The measurement problem

- I need to run the experiment M times, accessing $m=1, \ldots, M$ bitstrings $x_{m}=\left(x_{m, 1}, \ldots, x_{m, n}\right)$ to access meaningful information.

$$
\begin{equation*}
|\langle 00 \mid \psi\rangle|^{2}=\lim _{M \rightarrow \infty} \sum_{m=1}^{M} \frac{\delta_{x_{m},(0,0)}}{M} \tag{11}
\end{equation*}
$$

- The measurement problem is a crucial part in the design of quantum algorithms.

Some common measurement circuits

- Z Basis measurements: Gives access to Born probabilities and arbitrary
expectation values involving only Z operators.

- One can also apply single qubit gates before the measurement, eg X Basis measurements:

- The key identity is $Z=H X H$.

Projection aspects and ancilla based measurements

- What happens if we do not measure entirely the system?
- Example: This measurement circuit takes a 2-qubit state $|\psi\rangle$, build a 3-qubit state $\left|\psi^{\prime}\right\rangle$
and delivers one measurement outcome $\nu=0,1$.

- This is a measurement with projection operators $P_{\nu}=1 \otimes 1 \otimes|\nu\rangle\langle\nu|, \nu=0,1$, which project the system into

$$
\begin{equation*}
P_{\nu}\left|\psi^{\prime}\right\rangle \quad \text { with probability } \quad\left\langle\psi^{\prime}\right| P_{\nu}\left|\psi^{\prime}\right\rangle \tag{12}
\end{equation*}
$$

