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Reminder: Structure of a quantum circuit

Quantum circuit: single qubit/two-qubit gates and measurements:

|0⟩

|0⟩

|0⟩

H

Algorithm: a quantum circuit to retrieve the solution of a problem in the measurement

data with high probability.
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Deutsch’s algorithm

• Problem: Given a single bit Boolean function f (x), is f constant i.e f (0) = f (1),

or balanced, i.e f (0) ̸= f (1)?

• We need to introduce an object called an Oracle, aka quantum black box.

• An oracle evaluates the classical function f on quantum states

Uf

x x

y y ⊕ f (x)

• Complexity will refer here to the number of oracles evaluation.

• Note: a quantum algorithm will be of practical use if the oracle can be

implemented easily
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Deutsch’s algorithm

|0⟩

|1⟩

H
uf

H

H

x x

y y ⊕ f (x)

One measurement gives me the solution, I would need two function evaluations in the

classical case: quantum speedup
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Deutsch’s algorithm

After the first Hadamards

|ψ⟩ = 1

2
(|0⟩+ |1⟩)(|0⟩ − |1⟩)

After the oracle

|ψ⟩′ = 1

2
(|0, 0⊕ f (0)⟩ − |0, 1⊕ f (0)⟩+ |1, 0⊕ f (1)⟩ − |1, 1⊕ f (1)⟩)

If f (0) = f (1), let 0⊕ f (0) = 0⊕ f (1) = a, 1⊕ f (0) = 1⊕ f (1) = b = 1− a

|ψ⟩ = 1

2
(|0⟩+ |1⟩)(|a⟩ − |b⟩)

After the last Hadamard,

|ψ⟩ =
1√
2
|0⟩ (|a⟩ − |b⟩)

I measure |0⟩ with probability 1 7



Deutsch’s algorithm

If f (0) ̸= f (1), let 0⊕ f (0) = 1⊕ f (1) = a, 1⊕ f (0) = 0⊕ f (1) = b

|ψ⟩ = 1

2
(|0⟩ − |1⟩)(|a⟩ − |b⟩)

After the last Hadamard,

|ψ⟩ =
1√
2
|1⟩ (|a⟩ − |b⟩)

I measure |1⟩ with probability 1
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Further reading

Some related algorithm using oracles:

• Deutsch Joza algorithm: generalization of Deutsch’s algorithm to multiple qubits:

oracle separation between P and EQP (exact quantum polynomial)

• Bernstein Vazirani and Simon’s algorithm: Prove an oracle separation between

BPP (bounded error classical polynomial) and BQP (bounded-error quantum

polynomial).
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Grover’s algorithm

• Unstructured search problem: Given a n−bit Boolean function f (x), such that

there exists a unique w such that f (w) = 1, find w .

• Application: Subroutine in various classical algorithms (example minimization

problem, or machine learning)

• Input: A n-bit phase oracle

|x⟩ Uf =
|x⟩

|1⟩
uf

H

x x

y y ⊕ f (x)

For any input x , we can mark to the solution

Uf |x⟩ = (−1)f (x) |x⟩

The ancilla qubit has been ‘uncomputed’.
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Grover’s algorithm

• Classical algorithm: O(2n) evaluations (Just test in a loop. . . )

• Grover’s quantum algorithm O(
√
2n) oracle evaluations: quadratic speedup

• Possible applications: solving NP-complete problems that allow for oracle

implementations (eg the 3-SAT problem), brute-force attacks on cryptographic

keys . . .
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Grover’s algorithm

So simple. . .

|0⊗n⟩ H⊗n Uf Ud

t times

• with the diffuser Ud = 2 |ψ⟩ ⟨ψ| − 1, with |ψ⟩ = 1√
N

∑
x |x⟩ the superposition on

all N = 2n bitstrings x = x1, . . . , xn.
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Grover’s algorithm

After the first Hadamards (N = 2n), the state is

H⊗n |0⟩⊗n =
1√
N
(|0⟩+ |1⟩)⊗n =

1√
N

∑
x

|x⟩ = |ψ⟩

Introducing, |α⟩ = 1√
N−1

∑
x ̸=w |x⟩, we can write

|ψ⟩ = sin(θ/2) |w⟩+ cos(θ/2) |α⟩ ,

with sin(θ/2) = 1/
√
N.

Combined application of oracle and diffuser will lead to a rotation of the state |ψ⟩
towards the solution.

Uf |ψ⟩ = − sin(θ/2) |w⟩+ cos(θ/2) |α⟩ ,
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Grover’s algorithm

Ud |α⟩ = cos(θ) |α⟩+ sin(θ) |w⟩
Ud |w⟩ = − cos(θ) |w⟩+ sin(θ) |α⟩

After one iteration,

|ψ1⟩ = UdUf |ψ⟩ = sin(3θ/2) |w⟩+ cos(3θ/2) |α⟩

After t iterations,

|ψt⟩ = sin((2t + 1)θ/2) |w⟩+ cos((2t + 1)θ/2) |α⟩
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Grover’s algorithm: time complexity

• Success probability

pt = | ⟨w |ψt⟩ |2 = sin((2t + 1)θ/2)2,

which becomes of order one for θt = O(1).

• Remember that sin(θ/2) = 1/
√
N = 1/

√
2n, thus θ ≈ 2/

√
2n, we obtain t should

be of the order of
√
2n.
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Implementation details

|0⊗n⟩ H⊗n Uf Ud

t times

• Implentation of the oracle Uf depending on the function f : Careful Boolean logic

to ‘mark’ solution without knowing the solution, eg test Boolean assertions using

CNOT s and ancillas.
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Implementation details

• Implementation of the diffuser Ud = 2 |ψ⟩ ⟨ψ| − 1: This can be done with a few

gates, including a N-qubit Toffoli gate

H X X H

H X X H

H X X H

H X X H

H X H H X H

• In practice, the Toffoli gate must be decomposed in elementary CNOT gates, in

an optimal way that is platform dependent
18



Illustration with an IBM quantum computer (c.f., Quantum Practical 2)

• The measurement gives you the solution (if errors are not too large)

• Take-Home Message: The required number of oracle evaluations ∼
√
N is smaller

than the number of entries N of the database!
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Grover’s algorithm: final remarks

• The quadratic speedup
√
N = 2n of Grover’s algorithm is optimal for any

quantum algorithm for unstructured search (see eg Preskill).

• This is sad news!!!: With an exponential speedup, some NP-complete problems

could have been solved in polynomial time in the size n, thus any NP problem

could have been solved in polynomial time. . . .

1. Consider a NP-complete problem of

size n represented by a Boolean

function f (eg 3-sat)

2. Implement the corresponding Grover

oracle with n qubits

3. Run Grover’s algorithm
~x ~y ~y

x

y

x

y

~x

y
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Shor’s algorithm

• Perhaps the most famous quantum algorithm

• Exponential speedup over the best known factorization algorithm

• Relies on order finding: find the period r of the function f (x) = ax mod(N).

|0⊗m⟩

|0⊗n⟩

H⊗m

Uexp

QFT−1x x

f (x)

• Performance limited by the first step of modular exponentiation, ∼ O(N3) in

some schemes.

• Similar circuit for Quantum Phase Estimation algorithm
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Quantum Optimization

• Encodes a classical optimization problem in a Hamiltonian operator H(x)

• Minimizes H using quantum annealing, or variational algorithms.

|0⟩⊗n U(θ⃗) u1 ⊗ · · · ⊗ un

Preparation Measurement

Update θ⃗

• Very attractive for quantum problems H: condensed matter, quantum chemistry

• Absolute limitations: Active field of research.
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State of the art

Quantum algorithms: A survey of applications and end-to-end complexities

Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-Fang

Chen, András Gilyén, Connor T. Hann, Michael J. Kastoryano, Emil T. Khabiboulline,

Aleksander Kubica, Grant Salton, Samson Wang, Fernando G. S. L. Brandão

arxiv.org/abs/2310.03011
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An error in a quantum computer?

• Example: Spontaneous emission with an atomic qubit |ψ⟩ = |1⟩

|1⟩ →
√
1− p |1⟩ |0⟩photon +

√
p |0⟩ |1⟩photon (1)

• Spontaneous emission process corresponds to a ‘bitflip error’ |ψ⟩ → X |ψ⟩

|ψ⟩ → |ψ⟩ |E ⟩I + X |ψ⟩ |E ⟩X (2)
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An error in a quantum computer?

• For a general qubit state |ψ⟩ = (α |0⟩+ β |1⟩), a decoherence process can always

be interpretated as a sum of ‘Pauli Errors’:

|ψ⟩ → |ψ⟩ |E ⟩I + X |ψ⟩ |E ⟩X + Y |ψ⟩ |E ⟩Y + Z |ψ⟩ |E ⟩Z (3)

• Quantum error correction: How to detect an error without destroying the

quantum superposition?
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The bit flip code

• Our first code: The bit flip code

|ψ⟩ = α |0⟩L + β |1⟩L (4)

with a logical qubit that is made of three physical qubits

|0⟩L = |000⟩ |1⟩L = |111⟩ (5)

• The code aims at tracking and correcting X errors occurring on one of the three

physical qubits

|ψ⟩ → |ψ⟩ |E ⟩I +
∑

i=1,2,3

Xi |ψ⟩ |E ⟩Xi
→QEC |ψ⟩ (6)
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The bit flip code

• There are two mesurements to be made ⟨Z1Z2⟩, ⟨Z2Z3⟩, giving rise to unique

error syndromes, independently of the qubit superposition state.

Error State ⟨Z1Z2⟩, ⟨Z2Z3⟩
none α |000⟩+ β |111⟩ 1,1

X1 α |100⟩+ β |011⟩ -1,1

X2 α |010⟩+ β |101⟩ -1,-1

X3 α |001⟩+ β |110⟩ 1,-1

• Code distance: Number of errors that map one logical state to the other. Here

it’s d = 3. For a general d , we can correct t errors if d ≥ 2t + 1.

• How to measure and correct errors?
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The bit flip code: Collective measurements

• We require a collective measurement of ⟨Z1Z2⟩ with two measurement outcomes

(eigenvalues) ϵ = ±1:

Z1Z2 = |00⟩ ⟨00|+ |11⟩ ⟨11|︸ ︷︷ ︸
P1

− (|01⟩ ⟨01|+ |10⟩ ⟨10|)︸ ︷︷ ︸
P−1

• A measurement on |ψ′⟩ gives a mesurement outcome ϵ and a projection

|ψ′⟩ → Pϵ |ψ′⟩with probability ⟨ψ|Pϵ|ψ⟩

• If |ψ′⟩ is proportional to |ψ⟩ ,X1 |ψ⟩ ,X2 |ψ⟩, we obtain a deterministic

measurement ϵ = 1, or ϵ = −1, and the state is unchanged.

• For a quantum superposition of errors, the outcome is probabilitic, but the

post-measured state is compatible with such outcome.
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The bit flip code: Implementation aspects

• Step 1: Encoding from a physical qubit state |ψ1⟩ = α |0⟩+ β |1⟩:
|ψ1⟩

|0⟩

|0⟩

|ψ⟩ = α |000⟩+ β |111⟩

• Side remark: This is very different from quantum cloning |ψ⟩ → |ψ⟩⊗3, which can

be proven to be strictly impossible.

31



The bit flip code: Implementation aspects

• Step 2: Error syndromes and recoveries: One requires ancilla qubits (see also

Exercices 4)

|ψ1⟩

|0⟩

|0⟩

|0⟩ → Z1Z2

|0⟩ → Z2Z3

Gates with errors

• The logical gates XL = |0⟩L ⟨1|+ h.c = X1X2X3, ZL = |0⟩L ⟨0| − |1⟩L ⟨1| = Z1,

etc, can be expressed in terms of physical gates.
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The bit flip code: Limitations

• The bit flip code fails for two and three qubit bit flip errors with probability

pL = 3p2(1− p) + p3 (7)

with p the single qubit error

• Notion of threshold: Quantum error correction is only useful when the logical

qubit lifetime is larger than the physical qubit lifetime, i.e when pL ≤ p, this

means when p ≤ 1/2.

• What about combined presence of X , Y , Z errors?
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Steane code

• One logical qubit made of seven physical qubits.

• The error syndromes are defined as the set

S = {Z4Z5Z6Z7,Z2Z3Z6Z7,Z1Z3Z5Z7,X4X5X6X7,X2X3X6X7,X1X3X5X7}.
• These operators commute, i.e errors can be measured successively

• The ‘code world’ (distance d = 3)

|0⟩L = 1/
√
8 (|0000000⟩+ |1010101⟩+ |0110011⟩+ |1100110⟩

+ |0001111⟩+ |1011010⟩+ |0111100⟩+ |1101001⟩)
|1⟩L = X1X2X3 |0⟩L (8)

• The code is ‘stabilized’ by S : For any |ψ⟩ = α |0⟩L + β |1⟩L, for any g ∈ S ,

g |ψ⟩ = |ψ⟩.
• The logical gates are XL =

∏
i Xi , ZL =

∏
i Zi
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Steane code

• The Steane code is an example of stabilizer codes, whose error syndromes are

elements of a commuting Pauli subgroup.

• For the purpose of this lecture, we will simply check that the syndromes do the

job.

• General rules:

• If Zi is present in an error syndrome g , it will detect Xi errors (because

XiZiXi = −Zi , and operators acting on different sites i , j commute.)

• Similarly, Zi errors are detected by Xi operators .

• Y = iXZ , therefore a Y error is a Z error followed by an X error.
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Steane code

Error Z4Z5Z6Z7 Z2Z3Z6Z7 Z1Z3Z5Z7 X4X5X6X7 X2X3X6X7 X1X3X5X7

none 1 1 1 1 1 1

X1 1 1 -1 1 1 1

X2 1 -1 1 1 1 1

X3 1 -1 -1 1 1 1

X4 -1 1 -1 1 1 1

X5 -1 1 -1 1 1 1

X6 -1 -1 1 1 1 1

X7 -1 -1 -1 1 1 1

Z1 1 1 1 1 1 -1
...

Y1 1 1 -1 1 1 -1
...
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Steane code: Conclusion

• The Steane corrects any single qubit errors.

• As the bitflip code, it does not corrected double errors (ex: X1X2).

• A first option to achieve Fault tolerance (reaching arbitrary precision in presence

of a finite error probability): Concatenated Steane Codes.

• Another approach: Surface codes.
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Surface code

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

• Kitaev, Bravyi (1997), following works

on ‘Toric codes’.

• The physical qubits sit on a 2D lattice.

• The stabilizer operators, i.e the

measurements to be made for error

detection, are

Zi1Zi2Zi3Zi4 on plaquettes

Xj1Xj2Xj3Xj4 on vertices

• Code world is ‘stabilized’ by all such

operators g |ψ⟩ = |ψ⟩

38



Quantum error correction in 2024

Rydberg atom qubits (Harvard, M. Lukin group)
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