Introduction to quantum computing

Lecture 2: Quantum algorithms

Benoît Vermersch

March 28, 2024

LPMMC Grenoble

Outline

Our first quantum algorithm: Deutsch's algorithm

Quadratic speedup: Grover's algorithm Implementation details

Other important quantum algorithms

What is an error in quantum computing?

Outline

Our first quantum algorithm: Deutsch's algorithm
Quadratic speedup: Grover's algorithm
Implementation details

Other important quantum algorithms

What is an error in quantum computing?

Reminder: Structure of a quantum circuit

Quantum circuit: single qubit/two-qubit gates and measurements:

Algorithm: a quantum circuit to retrieve the solution of a problem in the measurement data with high probability.

Deutsch's algorithm

- Problem: Given a single bit Boolean function $f(x)$, is f constant i.e $f(0)=f(1)$, or balanced, i.e $f(0) \neq f(1)$?
- We need to introduce an object called an Oracle, aka quantum black box.
- An oracle evaluates the classical function f on quantum states

- Complexity will refer here to the number of oracles evaluation.
- Note: a quantum algorithm will be of practical use if the oracle can be implemented easily

Deutsch's algorithm

One measurement gives me the solution, I would need two function evaluations in the classical case: quantum speedup

Deutsch's algorithm

After the first Hadamards

$$
|\psi\rangle=\frac{1}{2}(|0\rangle+|1\rangle)(|0\rangle-|1\rangle)
$$

After the oracle

$$
|\psi\rangle^{\prime}=\frac{1}{2}(|0,0 \oplus f(0)\rangle-|0,1 \oplus f(0)\rangle+|1,0 \oplus f(1)\rangle-|1,1 \oplus f(1)\rangle)
$$

If $f(0)=f(1)$, let $0 \oplus f(0)=0 \oplus f(1)=a, 1 \oplus f(0)=1 \oplus f(1)=b=1-a$

$$
|\psi\rangle=\frac{1}{2}(|0\rangle+|1\rangle)(|a\rangle-|b\rangle)
$$

After the last Hadamard,

$$
|\psi\rangle=\frac{1}{\sqrt{2}}|0\rangle(|a\rangle-|b\rangle)
$$

I measure $|0\rangle$ with probability 1

Deutsch's algorithm

If $f(0) \neq f(1)$, let $0 \oplus f(0)=1 \oplus f(1)=a, 1 \oplus f(0)=0 \oplus f(1)=b$

$$
|\psi\rangle=\frac{1}{2}(|0\rangle-|1\rangle)(|a\rangle-|b\rangle)
$$

After the last Hadamard,

$$
|\psi\rangle=\frac{1}{\sqrt{2}}|1\rangle(|a\rangle-|b\rangle)
$$

I measure $|1\rangle$ with probability 1

Further reading

Some related algorithm using oracles:

- Deutsch Joza algorithm: generalization of Deutsch's algorithm to multiple qubits: oracle separation between \mathbf{P} and EQP (exact quantum polynomial)
- Bernstein Vazirani and Simon's algorithm: Prove an oracle separation between BPP (bounded error classical polynomial) and BQP (bounded-error quantum polynomial).

Outline

Our first quantum algorithm: Deutsch's algorithm

Quadratic speedup: Grover's algorithm
Implementation details

Other important quantum algorithms

What is an error in quantum computing?

Grover's algorithm

- Unstructured search problem: Given a n-bit Boolean function $f(x)$, such that there exists a unique w such that $f(w)=1$, find w.
- Application: Subroutine in various classical algorithms (example minimization problem, or machine learning)
- Input: A n-bit phase oracle

For any input x, we can mark to the solution

$$
U_{f}|x\rangle=(-1)^{f(x)}|x\rangle
$$

The ancilla qubit has been 'uncomputed'.

Grover's algorithm

- Classical algorithm: $O\left(2^{n}\right)$ evaluations (Just test in a loop...)
- Grover's quantum algorithm $O\left(\sqrt{2^{n}}\right)$ oracle evaluations: quadratic speedup
- Possible applications: solving NP-complete problems that allow for oracle implementations (eg the 3-SAT problem), brute-force attacks on cryptographic keys...

Grover's algorithm

So simple...

- with the diffuser $U_{d}=2|\psi\rangle\langle\psi|-1$, with $|\psi\rangle=\frac{1}{\sqrt{N}} \sum_{x}|x\rangle$ the superposition on all $N=2^{n}$ bitstrings $x=x_{1}, \ldots, x_{n}$.

Grover's algorithm

After the first Hadamards $\left(N=2^{n}\right)$, the state is

$$
H^{\otimes n}|0\rangle^{\otimes n}=\frac{1}{\sqrt{N}}(|0\rangle+|1\rangle)^{\otimes n}=\frac{1}{\sqrt{N}} \sum_{x}|x\rangle=|\psi\rangle
$$

Introducing, $|\alpha\rangle=\frac{1}{\sqrt{N-1}} \sum_{x \neq w}|x\rangle$, we can write

$$
|\psi\rangle=\sin (\theta / 2)|w\rangle+\cos (\theta / 2)|\alpha\rangle,
$$

with $\sin (\theta / 2)=1 / \sqrt{N}$.
Combined application of oracle and diffuser will lead to a rotation of the state $|\psi\rangle$ towards the solution.

$$
U_{f}|\psi\rangle=-\sin (\theta / 2)|w\rangle+\cos (\theta / 2)|\alpha\rangle,
$$

Grover's algorithm

$$
\begin{aligned}
U_{d}|\alpha\rangle & =\cos (\theta)|\alpha\rangle+\sin (\theta)|w\rangle \\
U_{d}|w\rangle & =-\cos (\theta)|w\rangle+\sin (\theta)|\alpha\rangle
\end{aligned}
$$

After one iteration,

$$
\left|\psi_{1}\right\rangle=U_{d} U_{f}|\psi\rangle=\sin (3 \theta / 2)|w\rangle+\cos (3 \theta / 2)|\alpha\rangle
$$

After t iterations,

$$
\left|\psi_{t}\right\rangle=\sin ((2 t+1) \theta / 2)|w\rangle+\cos ((2 t+1) \theta / 2)|\alpha\rangle
$$

Grover's algorithm: time complexity

- Success probability

$$
p_{t}=\left|\left\langle w \mid \psi_{t}\right\rangle\right|^{2}=\sin ((2 t+1) \theta / 2)^{2}
$$

which becomes of order one for $\theta t=\mathcal{O}(1)$.

- Remember that $\sin (\theta / 2)=1 / \sqrt{N}=1 / \sqrt{2^{n}}$, thus $\theta \approx 2 / \sqrt{2^{n}}$, we obtain t should be of the order of $\sqrt{2^{n}}$.

Implementation details

- Implentation of the oracle U_{f} depending on the function f : Careful Boolean logic to 'mark' solution without knowing the solution, eg test Boolean assertions using CNOTs and ancillas.

Implementation details

- Implementation of the diffuser $U_{d}=2|\psi\rangle\langle\psi|-1$: This can be done with a few gates, including a N-qubit Toffoli gate

- In practice, the Toffoli gate must be decomposed in elementary CNOT gates, in an optimal way that is platform dependent

Illustration with an IBM quantum computer (c.f., Quantum Practical 2)

- The measurement gives you the solution (if errors are not too large)

- Take-Home Message: The required number of oracle evaluations $\sim \sqrt{N}$ is smaller than the number of entries N of the database!

Grover's algorithm: final remarks

- The quadratic speedup $\sqrt{N=2^{n}}$ of Grover's algorithm is optimal for any quantum algorithm for unstructured search (see eg Preskill).
- This is sad news!!!!: With an exponential speedup, some NP-complete problems could have been solved in polynomial time in the size n, thus any NP problem could have been solved in polynomial time....

1. Consider a NP-complete problem of size n represented by a Boolean function f (eg 3-sat)
2. Implement the corresponding Grover oracle with n qubits
3. Run Grover's algorithm

Outline

Our first quantum algorithm: Deutsch's algorithm

Quadratic speedup: Grover's algorithm

 Implementation detailsOther important quantum algorithms

What is an error in quantum computing?

Shor's algorithm

- Perhaps the most famous quantum algorithm
- Exponential speedup over the best known factorization algorithm
- Relies on order finding: find the period r of the function $f(x)=a^{x} \bmod (N)$.

- Performance limited by the first step of modular exponentiation, $\sim \mathcal{O}\left(N^{3}\right)$ in some schemes.
- Similar circuit for Quantum Phase Estimation algorithm

Quantum Optimization

- Encodes a classical optimization problem in a Hamiltonian operator $H(x)$
- Minimizes H using quantum annealing, or variational algorithms.

- Very attractive for quantum problems H : condensed matter, quantum chemistry
- Absolute limitations: Active field of research.

State of the art

Quantum algorithms: A survey of applications and end-to-end complexities

Alexander M. Dalzell, Sam McArdle, Mario Berta, Przemyslaw Bienias, Chi-Fang Chen, András Gilyén, Connor T. Hann, Michael J. Kastoryano, Emil T. Khabiboulline, Aleksander Kubica, Grant Salton, Samson Wang, Fernando G. S. L. Brandão arxiv.org/abs/2310.03011

Outline

Our first quantum algorithm: Deutsch's algorithm

Quadratic speedup: Grover's algorithm

 Implementation details
Other important quantum algorithms

What is an error in quantum computing?

An error in a quantum computer?

- Example: Spontaneous emission with an atomic qubit $|\psi\rangle=|1\rangle$

$$
\begin{equation*}
|1\rangle \rightarrow \sqrt{1-p}|1\rangle|0\rangle_{\text {photon }}+\sqrt{p}|0\rangle|1\rangle_{\text {photon }} \tag{1}
\end{equation*}
$$

- Spontaneous emission process corresponds to a 'bitflip error' $|\psi\rangle \rightarrow X|\psi\rangle$

$$
\begin{equation*}
|\psi\rangle \rightarrow|\psi\rangle|E\rangle_{I}+X|\psi\rangle|E\rangle_{X} \tag{2}
\end{equation*}
$$

An error in a quantum computer?

- For a general qubit state $|\psi\rangle=(\alpha|0\rangle+\beta|1\rangle)$, a decoherence process can always be interpretated as a sum of 'Pauli Errors':

$$
\begin{equation*}
|\psi\rangle \rightarrow|\psi\rangle|E\rangle_{I}+X|\psi\rangle|E\rangle_{X}+Y|\psi\rangle|E\rangle_{Y}+Z|\psi\rangle|E\rangle_{Z} \tag{3}
\end{equation*}
$$

- Quantum error correction: How to detect an error without destroying the quantum superposition?

The bit flip code

- Our first code: The bit flip code

$$
\begin{equation*}
|\psi\rangle=\alpha|0\rangle_{L}+\beta|1\rangle_{L} \tag{4}
\end{equation*}
$$

with a logical qubit that is made of three physical qubits

$$
\begin{equation*}
|0\rangle_{L}=|000\rangle \quad|1\rangle_{L}=|111\rangle \tag{5}
\end{equation*}
$$

- The code aims at tracking and correcting X errors occurring on one of the three physical qubits

$$
\begin{equation*}
|\psi\rangle \rightarrow|\psi\rangle|E\rangle_{I}+\sum_{i=1,2,3} X_{i}|\psi\rangle|E\rangle_{X_{i}} \rightarrow_{\mathrm{QEC}} \quad|\psi\rangle \tag{6}
\end{equation*}
$$

The bit flip code

- There are two mesurements to be made $\left\langle Z_{1} Z_{2}\right\rangle,\left\langle Z_{2} Z_{3}\right\rangle$, giving rise to unique error syndromes, independently of the qubit superposition state.

Error	State	$\left\langle Z_{1} Z_{2}\right\rangle,\left\langle Z_{2} Z_{3}\right\rangle$
none	$\alpha\|000\rangle+\beta\|111\rangle$	1,1
X_{1}	$\alpha\|100\rangle+\beta\|011\rangle$	$-1,1$
X_{2}	$\alpha\|010\rangle+\beta\|101\rangle$	$-1,-1$
X_{3}	$\alpha\|001\rangle+\beta\|110\rangle$	$1,-1$

- Code distance: Number of errors that map one logical state to the other. Here it's $d=3$. For a general d, we can correct t errors if $d \geq 2 t+1$.
- How to measure and correct errors?

The bit flip code: Collective measurements

- We require a collective measurement of $\left\langle Z_{1} Z_{2}\right\rangle$ with two measurement outcomes (eigenvalues) $\epsilon= \pm 1$:

$$
Z_{1} Z_{2}=\underbrace{|00\rangle\langle 00|+|11\rangle\langle 11|}_{P_{1}}-\underbrace{(|01\rangle\langle 01|+|10\rangle\langle 10|)}_{P_{-1}}
$$

- A measurement on $\left|\psi^{\prime}\right\rangle$ gives a mesurement outcome ϵ and a projection

$$
\left|\psi^{\prime}\right\rangle \rightarrow P_{\epsilon}\left|\psi^{\prime}\right\rangle \text { with probability }\langle\psi| P_{\epsilon}|\psi\rangle
$$

- If $\left|\psi^{\prime}\right\rangle$ is proportional to $|\psi\rangle, X_{1}|\psi\rangle, X_{2}|\psi\rangle$, we obtain a deterministic measurement $\epsilon=1$, or $\epsilon=-1$, and the state is unchanged.
- For a quantum superposition of errors, the outcome is probabilitic, but the post-measured state is compatible with such outcome.

The bit flip code: Implementation aspects

- Step 1: Encoding from a physical qubit state $\left|\psi_{1}\right\rangle=\alpha|0\rangle+\beta|1\rangle$:

- Side remark: This is very different from quantum cloning $|\psi\rangle \rightarrow|\psi\rangle^{\otimes 3}$, which can be proven to be strictly impossible.

The bit flip code: Implementation aspects

- Step 2: Error syndromes and recoveries: One requires ancilla qubits (see also Exercices 4)

- The logical gates $X_{L}=|0\rangle_{L}\langle 1|+$ h.c $=X_{1} X_{2} X_{3}, Z_{L}=|0\rangle_{L}\langle 0|-|1\rangle_{L}\langle 1|=Z_{1}$,

The bit flip code: Limitations

- The bit flip code fails for two and three qubit bit flip errors with probability

$$
\begin{equation*}
p_{L}=3 p^{2}(1-p)+p^{3} \tag{7}
\end{equation*}
$$

with p the single qubit error

- Notion of threshold: Quantum error correction is only useful when the logical qubit lifetime is larger than the physical qubit lifetime, i.e when $p_{L} \leq p$, this means when $p \leq 1 / 2$.
- What about combined presence of X, Y, Z errors?

Steane code

- One logical qubit made of seven physical qubits.
- The error syndromes are defined as the set

$$
S=\left\{Z_{4} Z_{5} Z_{6} Z_{7}, Z_{2} Z_{3} Z_{6} Z_{7}, Z_{1} Z_{3} Z_{5} Z_{7}, X_{4} X_{5} X_{6} X_{7}, X_{2} X_{3} X_{6} X_{7}, X_{1} X_{3} X_{5} X_{7}\right\}
$$

- These operators commute, i.e errors can be measured successively
- The 'code world' (distance $d=3$)

$$
\begin{align*}
|0\rangle_{L} & =1 / \sqrt{8}(|0000000\rangle+|1010101\rangle+|0110011\rangle+|1100110\rangle \\
& +|0001111\rangle+|1011010\rangle+|0111100\rangle+|1101001\rangle) \\
|1\rangle_{L} & =X_{1} X_{2} X_{3}|0\rangle_{L} \tag{8}
\end{align*}
$$

- The code is 'stabilized' by S : For any $|\psi\rangle=\alpha|0\rangle_{L}+\beta|1\rangle_{L}$, for any $g \in S$, $g|\psi\rangle=|\psi\rangle$.
- The logical gates are $X_{L}=\prod_{i} X_{i}, Z_{L}=\prod_{i} Z_{i}$

Steane code

- The Steane code is an example of stabilizer codes, whose error syndromes are elements of a commuting Pauli subgroup.
- For the purpose of this lecture, we will simply check that the syndromes do the job.
- General rules:
- If Z_{i} is present in an error syndrome g, it will detect X_{i} errors (because $X_{i} Z_{i} X_{i}=-Z_{i}$, and operators acting on different sites i, j commute.)
- Similarly, Z_{i} errors are detected by X_{i} operators .
- $Y=i X Z$, therefore a Y error is a Z error followed by an X error.

Steane code

Error	$Z_{4} Z_{5} Z_{6} Z_{7}$	$Z_{2} Z_{3} Z_{6} Z_{7}$	$Z_{1} Z_{3} Z_{5} Z_{7}$	$X_{4} X_{5} X_{6} X_{7}$	$X_{2} X_{3} X_{6} X_{7}$	$X_{1} X_{3} X_{5} X_{7}$
none	1	1	1	1	1	1
X_{1}	1	1	-1	1	1	1
X_{2}	1	-1	1	1	1	1
X_{3}	1	-1	-1	1	1	1
X_{4}	-1	1	-1	1	1	1
X_{5}	-1	1	-1	1	1	1
X_{6}	-1	-1	1	1	1	1
X_{7}	-1	-1	-1	1	1	1
Z_{1}	1	1	1	1	1	-1
\vdots						
Y_{1}	1	1	-1	1	1	-1
\vdots						

Steane code: Conclusion

- The Steane corrects any single qubit errors.
- As the bitflip code, it does not corrected double errors (ex: $X_{1} X_{2}$).
- A first option to achieve Fault tolerance (reaching arbitrary precision in presence of a finite error probability): Concatenated Steane Codes.
- Another approach: Surface codes.

Surface code

- Kitaev, Bravyi (1997), following works on 'Toric codes'.
- The physical qubits sit on a 2D lattice.
- The stabilizer operators, i.e the measurements to be made for error detection, are

$$
\begin{aligned}
& Z_{i_{1}} Z_{i_{2}} Z_{i_{3}} Z_{i_{4}} \text { on plaquettes } \\
& X_{j_{1}} X_{j_{2}} X_{j_{3}} X_{j_{4}} \text { on vertices }
\end{aligned}
$$

- Code world is 'stabilized' by all such operators $g|\psi\rangle=|\psi\rangle$

Quantum error correction in 2024

Rydberg atom qubits (Harvard, M. Lukin group)

