

Quantum Error Correction (QEC)

Benoit.vermersch@lpmmc.cnrs.fr

Lecture 3

A qubit in the real world

Consider a single qubit state

$$
\ket{\psi} = \ket{1}
$$

Due to decoherence (e.g. spontaneous emission)

$$
\psi \rangle \otimes |E\rangle \rightarrow \sqrt{1 - p_x - p_y - p_z} |\psi\rangle \otimes |E\rangle + \sqrt{p_x} X |\psi\rangle \otimes |E_x\rangle + \sqrt{p_y} Y |\psi\rangle \otimes |E_y\rangle + \sqrt{p_z} Z |\psi\rangle \otimes |E_z\rangle
$$

\nNo errors
\nEivionment
\n**Environment**
\n**EXECUTE:**
\n**EXECUTE:**

How can we reset the qubit states (without destroying the qubit superposition) ?

Quantum Error Correction

Quantum error correction: Encode a **logical** qubit in a enlarged Hilbert space, e.g., many **physical** qubits

Our first QEC code: **The three-qubit bit-flip code**

$$
\begin{array}{ll}\n\bullet & \bullet & \ket{\psi} = \alpha \ket{000} + \beta \ket{111} \\
& \downarrow \\
& \text{Logical 0'} & \text{Logical 1'} \\
& & \ket{0}_L & \ket{1}_L\n\end{array}
$$

Our first QEC code: **The three-qubit bit-flip code**

$$
|\psi\rangle = \alpha|000\rangle + \beta|111\rangle
$$

The basic idea:

One spin flips, e.g $|\psi\rangle = \alpha |100\rangle + \beta |011\rangle$

First step (Error syndrome): Measure S=Z¹ Z2 , Z² Z3

 \rightarrow measurement that do not destroy the superposition state, i.e. each basis state is an eigenstate of the measurement operator

 \rightarrow The measurements detects the error unambiguously

Our first QEC code: **The three-qubit bit-flip code** $|\psi\rangle = \alpha |000\rangle + \beta |111\rangle$ **The basic idea:**

One spin flips, e.g $|\psi\rangle = \alpha |100\rangle + \beta |011\rangle$

First step (Error syndrome): Measure S=Z¹ Z2 , Z² Z3

$$
\langle Z_1 Z_2 \rangle = -1 \quad \langle Z_2 Z_3 \rangle = 1
$$

Second step \rightarrow Error recovery : $X_1 \ket{\psi}$

Question: Error syndrome/Recovery for the second and third qubit ?

Our first QEC code: **The three-qubit bit-flip code**

Implementation :

1. Create a logical qubit via two qubit entangling gates

Our first QEC code: **The three-qubit bit-flip code**

Implementation :

2. Evolve the logical qubit in the 'code world'

Our first QEC code: **The three-qubit bit-flip code**

Implementation (see TD3):

3. Error syndrome (without destroying the qubit superposition)

4. Error recovery (easy part and optional)

Lecture 3

Our second QEC code: **The steane code**

Goal: Correct arbitrary single qubit gates

$$
|\psi\rangle \otimes |E\rangle \to \sqrt{1 - p_x - p_y - p_z} |\psi\rangle \otimes |E\rangle + \sqrt{p_x} X |\psi\rangle \otimes |E_x\rangle + \sqrt{p_y} Y |\psi\rangle \otimes |E_y\rangle + \sqrt{p_z} Z |\psi\rangle \otimes |E_z\rangle
$$

No errors
Bit flip
Bit+Phase flip
Phase flip

For the qubit, this error decomposition **is complete** (proof in terms of Kraus representation of quantum processes)

The Steane code corrects for bit flip, phase flips, and bit+phase flips, thus for arbitrary single qubit errors.

The Steane code

Code world

$$
\left|\psi\right\rangle =\alpha\left|0\right\rangle _{L}+\beta\left|1\right\rangle _{L}
$$

 $|0\rangle_L = |0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle$ $+ |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle$ $|1\rangle_L = X_{1111111} |0\rangle_L.$

 \rightarrow 1 logical qubits = 7 physical qubits

The Steane code

 $|0\rangle_L$ = $|0000000\rangle + |1010101\rangle + |0110011\rangle + |1100110\rangle$ $+ |0001111\rangle + |1011010\rangle + |0111100\rangle + |1101001\rangle$ $|1\rangle_L = X_{1111111} |0\rangle_L$.

Strict Conditions for QEC :

- \rightarrow (1) The code world is not affected by the syndrome measurement
- \rightarrow (2) A unique error syndrome per error

Stabilizer formalism

Strict Conditions for QEC :

- \rightarrow (1) Any logical qubit state is not affected by the syndrome measurement
- \rightarrow (2) A unique error syndrome per error

These conditions can be easily checked for codes that are written in the stabilizer formalism

Stabilizer code [n,k] (Gottesman and coworkers, 1997)

- \rightarrow Consider n physical qubits.
- \rightarrow Consider S a subgroup in the group of Pauli matrices generated by (n-k) commuting elements ${\sf g}_{{}_1}\!$,…, ${\sf g}_{{}_{\sf n\text{-}k}}$ (-Identity is excluded)
- \rightarrow Then V_{s,} the vector space stabilized by S, is of dimension 2^k, i.e. we can encode k logical qubits
- \rightarrow The set of possible Errors $\{E_k\}$ that can be corrected are such that for any j,k
	- (1) $\mathsf{E}^{\mathsf{dag}}_{\mathsf{j}}\mathsf{E}_{\mathsf{k}}$ is in S

Or (2) $\mathsf{E}_{\mathsf{j}}^{\mathsf{dag}}\mathsf{E}_{\mathsf{k}}$ anticommutes with one element of S

Stabilizer formalism

Stabilizer code [n,k] $\mathsf{V}_{_{\mathbf{S}_{\cdot}}}$ the vector space stabilized by S, is of dimension 2^k, i.e. can encode k logical qubits The set of possible Errors E={E_k} that can be corrected are such that for any j,k (1) $\mathsf{E}^\mathsf{dag}_\mathsf{j} \mathsf{E}^{}_\mathsf{k}$ is in S Or (2) $\mathsf{E}_{_\mathsf{j}}^{\mathsf{dag}}\mathsf{E}_{_\mathsf{k}}$ anticommutes with one element of S

QEC recipe: The code world is given by two orthonormal states of the vector space V_s Error Syndromes : Stabilizer measurements

Example The Bit-flip code is a [3,1] stabilizer code!

E={I,X₁,X₂,X₃} can be corrected by measuring the stabilizer generators S={Z₁Z₂,Z₂Z₃} The logical states are $\ket{000}$, $\ket{111}$ belong to the vector space V_s

Exercise Prove that the Steane code is a [7,1] stabilizer code.

The challenge of fault-tolerant quantum computing

A single QEC code does not protect against **any** error. (ex error X₁X₂ in the bit flip code..)

However, we may concatenate/combine several QEC codes to fight for error propagation provided the error probability per gate is below a certain threshold [Michael Ben-Or and Dorit Aharonov]

Fault-tolerant quantum computing = A significant technological challenge. Estimation : ~10 000 physical qubits per logical qubit for the surface code

J. Preskill « I've already emphasized repeatedly that it will probably be a long time before we have faulttolerant quantum computers solving hard problems. »

Physical qubits

Ancilla qubits \rightarrow perform stabilizer measurements All $Z_a Z_b Z_c Z_d$ and $X_a X_b X_c X_d$ (commuting operators)

Ref : https://arxiv.org/pdf/1208.0928.pdf

Error syndrome = pattern of stabilization results

phase flip

Initilization and operation

- 1) Measure all stabilizers \rightarrow Creates a logical state $|\psi\rangle$
- 2) Apply logical operations X_L Z_L (Preserve the code world)
- 3) Check for errors by stabilizer measurements

Robustness of the logical qubit (TD3)

QEC fails when the numbers of errors~system size d/2

Example : One error syndrome for two possible errors

 $\text{Logical X error rate } P_L$

Fault-tolerance can be achieved by increasing the array size

Experimental implementation of a minimal surface code

https://arxiv.org/pdf/1912.09410.pdf

Preparation of the 0^L logical state

- start from $0⁴$
- $measure$ all ancillas in 0

Repeted error correction

Consequence : we need more physical qubits

Scaling IBM Quantum technology

Consequence : we need more physical qubits

Lecture 3 : Summary

QEC is a hot topic in modern quantum computing and **a key challenge** for quantum technologies

Fault-tolerant quantum computing requires many physical qubit per logical qubit

Surface codes implement QEC as 2D spin lattice models, which we also encounter in quantum simulation : Lecture 4

