Lecture 5

Quantum algorithms beyond the circuit model

Quantum optimization - Quantum simulation
Basic concepts of computer science

The complexity hierarchy of decision problems
→ Decision problems have a yes/no answer

Complexity: scaling of resources (for a deterministic Turing machine)

Important classes

P: Problem solved in polynomial time
NP: A yes answer can be verified in polynomial time
PSPACE: Problem solved with polynomial resources
EXPTIME: Problem solved in exponential time

NP-HARD: Every problem in NP can be transformed into this problem in polynomial time
NP-COMPLETE: A problem that is both NP and NP-HARD

Today’s lecture: Trying to solve some NP-complete problems via `quantum optimization`
Quantum adiabatic theorem

“A physical system remains in its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian's spectrum” Born-Fock (1928)

\[
\frac{i\hbar}{dt} \psi(t) = H(t)\psi(t)
\]

Schrodinger equation:

Instantaneous eigenstates:

\[H(t)\psi_n(t) = E_n(t)\psi_n(t)\]

Initial condition:

\[\psi(t = 0) = \psi_{n_0}\]

If evolution time **slow enough** (condition, see later)

\[\psi(t) \approx e^{i\theta(t)}\psi_{n_0}(t)\]

Consequence, we can prepare arbitrary ground states via slow time evolution, i.e quantum annealing
Quantum annealing (B. Apolloni, N. Cesa Bianchi and D. De Falco (1988)

Basic Idea:

1) **Encode** the solution of a ‘hard’ computational problem as the ground state of a classical Hamiltonian H_c (bitstrings are eigenstates of H_c)

2) Initialize the system in the ground state of a trivial quantum Hamiltonian H_0

3) ‘Slowly’ change the Hamiltonian towards H_c. Measure the System

$$H(t) = f(t)H_0 + g(t)H_c$$

$$f(t = 0) = g(t = t_f) = 1$$

$$f(t = t_f) = g(t = 0) = 0$$
Quantum annealing (B. Apolloni, N. Cesa Bianchi and D. De Falco (1988))

NB: quantum annealing is the quantum analog of simulated annealing

Quantum annealing exploits quantum tunneling
Example: Max-Cut

Problem:
Given a graph, divide the nodes in two parts (white versus black, i.e., bit 1 versus bit 0), such as the number of edges (‘cuts’) between the two parts is maximal.

Direct Applications: circuit chip design, data clustering, spin glass physics

Ex: Max-Cut = 5

Complexity: The corresponding decision problem is NP-Complete
Quantum annealing with Max-Cut

Step 1: Encoding in terms of a Ising model

\[H_C = \sum_{(i,j) \in G} \sigma_i^z \sigma_j^z \]

For a given bitstring \(s \) (ex 0001001,..), \(s \) is an eigenstate and

\[\langle s | H_C | s \rangle = \sum_{i,j \in G} Z(s_i)Z(s_j) \quad Z(s_i)Z(s_j) = 1 \ (-1) \quad s_i = s_j \ (s_i \neq s_j) \]

Therefore \(H_C = \# \text{[nocuts]} - \# \text{[cuts]} = \text{Constant} - 2\# \text{[cuts]} \)

Therefore the ground state \(s_{\text{sol}} \) is the solution of Max-Cut

This type of mapping extends to many NP-Complete problems (https://arxiv.org/abs/1302.5843)
Quantum annealing with Max-Cut

Step 1: Encoding in terms of a Ising model

\[H_C = \sum_{(i,j) \in G} \sigma^z_i \sigma^z_j \]

Step 2: Adiabatic state preparation

\[H(t) = \left(\frac{t}{\tau} \right) H_C + \left(1 - \frac{t}{\tau} \right) \sum_i \sigma^x_i \]

\[\psi(t = 0) = |\downarrow x, \ldots, \downarrow x\rangle \]

\[|\downarrow x\rangle = |\uparrow\rangle - |\downarrow\rangle \]

For an adiabatic ramp \(\psi(\tau) \approx \psi_c \)

Step 3: Readout
Quantum annealing with Max-Cut

Numerical illustration with QisKit (IBMQ Practical 5)

Step 1 load a graph

Step 2 brute force solution (for benchmarking)

MaxCut: 11
Winning Graphs \(((0, 2, 3, 5),\)
Quantum annealing with Max-Cut

Numerical illustration with QisKit (IBMQ Practical 4)

Step 3 Write a quantum annealing circuit based on the digital quantum simulation algorithm

Step 4 Measure the solution
First steps towards quantum annealing

2011: D-wave quantum computing releases D-wave one with 128 qubits!

2014: Troyer and co-workers (ETH) show numerical evidence of quantum annealing with 108 qubits. But, can also ‘simulate classically’ the whole process via quantum Monte Carlo simulations at finite temperature.

First steps towards quantum annealing

http://arxiv.org/abs/1512.02206 → Google responds with D-wave 2X...

D-wave is promising, but are there fundamental limitations...
Limitation of quantum annealing:
quantum-phase transitions

Condition for the quantum adiabatic theorem (TD5)

\[\tau \gg \max_{0 \leq s \leq 1} \frac{\left| \langle 0(s) \left| \frac{d\hat{H}(s)}{ds} \right| 1(s) \rangle \right|}{\Delta_{1,0}(s)^2} \quad (t = s\tau) \]

Instantaneous ‘gap’ \[\Delta_{1,0} = \epsilon_1(s) - \epsilon_0(s) \]

→ Performance of quantum annealing are governed by the size of the gap

Limitation of quantum annealing: quantum-phase transitions

What is the size of the gap?

\[H(t) = \left(\frac{t}{\tau} \right) H_C + \left(1 - \frac{t}{\tau} \right) \sum_i \sigma_i^x \]

\[\psi(t = 0) = |\downarrow_x, \ldots, \downarrow_x\rangle \]

The two ground states correspond to different type of `orders':

At certain time, the system crosses a **quantum phase transition**

At a QPT, the gap closes as we increase system sizes → It becomes harder to perform annealing
Limitation of quantum annealing: quantum-phase transitions

First order quantum phase transition: gaps closes exponentially with system size → Hard problem

Second-order phase transition: gap does not close exponentially
Limitation of quantum annealing: quantum-phase transitions

Current efforts:

Solution (1) Try to avoid first order phase transitions

Solution (2) Go beyond adiabaticity: Quantum Approximate Optimization Algorithm (QAOA)

Extra-control parameter $\rightarrow H(s, \lambda)$

$$H(s, \lambda) = f(s)H_0 + g(\lambda)H_1 + H_c$$
The quantum approximate optimization algorithm (E. Farhi 2014)

Problem (ex: Max-Cut) H_C

Step 1: Build a ground state candidate for the solution via a quantum computer

$$\psi = \prod_{j=1}^{n} e^{i\alpha_j H_C} e^{i\beta_j \sum_i \sigma_i^x} |000\ldots0\rangle$$

Step 2: Measure the cost-function

$$\langle \psi | H_C | \psi \rangle$$

Step 3: Feed the result into a classical optimization algorithm and try **Step 1** with new parameters (α_j, β_j)
The quantum approximate optimization algorithm (E. Farhi 2014)

Example of classical minimization: Gradient-Descent

The structure of algorithm is classical (example scipy.optimize)

However, In QAOA, the evaluation of the cost function (the energy), is performed on the quantum computer.
The quantum approximate optimization algorithm (E. Farhi 2014)

See also more recent attempts by Google
The quantum approximate optimization algorithm (E. Farhi 2014)

Quantum annealing → QAOA: It's not clear whether this method

1) can solve large classical problems (ex: Max-Cut)

2) outperforms quantum annealing?

In the mean time, can we solve quantum problems?
Solving quantum problems with quantum computers

Translating quantum chemistry for quantum computers

\[\mathcal{H}(R) = \sum_{pq} h_{pq}(R) \hat{a}_{p}^{\dagger} \hat{a}_{q} + \sum_{pqrs} h_{pqrs}(R) \hat{a}_{p}^{\dagger} \hat{a}_{q}^{\dagger} \hat{a}_{r} \hat{a}_{s} \]

Goal: Find the ground state of the molecule

Step 1: Express the Hamiltonian has a qubit Hamiltonian: **Jordan-Wigner Transformation**

\[
\begin{align*}
\hat{a}_j & \rightarrow I^{\otimes j-1} \otimes \sigma^+ \otimes \sigma^z_{N-j} \\
\hat{a}_j^{\dagger} & \rightarrow I^{\otimes j-1} \otimes \sigma^- \otimes \sigma^z_{N-j}
\end{align*}
\]

Step 2: Find the ground-state by quantum-approximate-optimization-algorithm (In this context, it’s called **Variational Quantum Eigensolver (VQE)**)
Solving quantum problems with quantum computers

Illustration with Google’s Sycamore

1 qubit = 1 orbital
Preparation of a ground-state candidate
Energy Measurement

Repeat with different parameters

Conclusions on quantum optimization

<table>
<thead>
<tr>
<th></th>
<th>Quantum annealing</th>
<th>Quantum Approximate-Optimization Algorithm</th>
<th>Variational Quantum Eigensolver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical Problem:</td>
<td>Classical</td>
<td>Classical</td>
<td>Quantum</td>
</tr>
<tr>
<td>Limitations:</td>
<td>Scaling of the Gap</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Summary: Quantum algorithms

- Quantum computers do exist and implement quantum circuits

- There are quantum algorithms that offer quantum speedup (Grover, Shor, etc)

- Quantum error correction: conceptually `solved’ - technical challenges

- New quantum algorithms that do not rely necessarily on quantum error correction: Quantum optimization/Quantum simulation

 → Quantum information meets many-body physics!

A very active research field, many developments expected in the next years!