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1 Measurement of ZZ stabilizers

The error syndromes in the three qubit bit flip code correspond to the measurement of the operators Z1Z2 and
Z2Z3. Let us consider the measurement of Z1Z2 in this exercice.

1. An error syndrome associated with Z1Z2 consists in projecting the state following Born’s rules. We define
P1, P−1 the projection operators associated with the eigenvalue ε = ±1 of the operator Z1Z2 (P1 +P−1 = 1).
Then after the measurement, the state is transformed as

|ψ〉 → Pε |ψ〉 (1)

with probability 〈ψ|Pε |ψ〉.

2. We first entangle the ancilla qubit with the two physical qubits via two CNOTs. We obtain

|ψ〉 |0〉 = (|00〉 〈00|+ |11〉 〈11|+ |00〉 〈00|+ |11〉 〈11|) |ψ〉) |0〉
|ψ〉 |0〉 → (|00〉 〈00|+ |11〉 〈11|) |ψ〉 |0〉+ (|01〉 〈01|+ |10〉 〈10|) |ψ〉 |1〉

= |ψ′〉 = P1 |ψ〉 |0〉+ P−1 |ψ〉 |1〉 (2)

Therefore, a measurement of the ancilla qubit in the 0 state occurs with probability 〈ψ′| |0〉 〈0| |ψ′〉 = 〈ψ|P1 |ψ〉,
and projects the state in P1 |ψ〉 |0〉. Same thing for P−1. Thus, an ancilla qubit allows us to realize the mesurement
of Z1Z2 as described above.

2 The three qubit phase flip code

The three qubit phase flip code can correct against qubit phase errors Z1, Z2, Z3 based on error syndromes asso-
ciated with the measurement of X1X2, X2X3, X1X3.

1. We define the error set E = {I, Z1, Z2, Z3}. For each error, we obtain a unique error syndrome.

2. In the spirit of the bit flip code, we define

|0L〉 = HHH |000〉 = (|0〉+ |1〉)(|0〉+ |1〉)(|0〉+ |1〉)
|1L〉 = HHH |111〉 = (|0〉 − |1〉)(|0〉 − |1〉)(|0〉 − |1〉) (3)

The two states are orthonal and stabilized by S, i.e X1X2 |aL〉 = |aL〉 (using XH |0〉 = X(|0〉 + |1〉) =
(|0〉+ |1〉) = H |0〉, and XH |1〉 = −H |1〉).
Suppose a phase error Z1 occurs on the first qubit

a |0L〉+ b |1L〉 → a(|0〉 − |1〉)(|0〉+ |1〉)(|0〉+ |1〉) + b(|0〉+ |1〉)(|0〉 − |1〉)(|0〉 − |1〉) (4)

Then the error syndromes give 〈X1X2〉 = −1 , 〈X2X3〉 = 1. I detect this error, which I can fix by applying
Z1.

3. First two CNOTS targeted on the second and third qubit

(a |0〉+ b |1〉) |0〉 |0〉 → (a |00〉+ b |11〉) |0〉 → a |000〉+ b |111〉 (5)

Then three Hadamard

a |000〉+ b |111〉 → aHHH |000〉+ bHHH |111〉 . (6)

4. 〈X1X2〉 = 〈H1H2Z1Z2H1H2〉. This means I can repeat the recipe of the previous exercise with application
of two Hadamard gates before and after the CNOTs.

We obtain

H⊗3 |ψ〉 = (|0〉1 〈0|+ |1〉1 〈1|)(|0〉2 〈0|+ |1〉2 〈1|)H
⊗3 |ψ〉

|ψ〉 |0〉 → H⊗3(|00〉 〈00|+ |11〉 〈11|)H⊗3 |ψ〉 |0〉+H⊗3(|01〉 〈01|+ |10〉 〈10|)H⊗3 |ψ〉 |1〉
= |ψ′〉 = PX(1) |ψ〉 |0〉+ PX(−1) |ψ〉 |1〉 (7)
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3 Fault tolerance with the surface code

Adapted from https://arxiv.org/pdf/1208.0928.pdf.

1. Consider a single row of the code of length d = 5 (number of white physical qubits).

By definition of a stabilizer code, any logical state |ψ〉 , i.e the code world is stabilized by the stabilizers, i.e
for any i = 1, . . . , 4

ZiZi+1 |ψ〉 = |ψ〉 . (8)

For an Xi error on a certain qubit, the state becomes |ψ′〉 = Xi |ψ〉. This will be detected via the measure-
ments of

〈ψ′|ZiZi±1 |ψ′〉 = 〈ψ|XiZiXiZi±1 |ψ〉 = −〈ψ|ZiZi±1 |ψ〉 = −1. (9)

2. Suppose the error syndrome step gives −1, 1,−1, 1. With two errors, the assignement is X2X3. The comple-
mentary error X1X4X5 would give the same syndrome, giving rise to a logical X error.

3. A qubit X error occurs with probability p during 8 steps of a logical operation. The probability of an error
is therefore 1− (1− p)8 ≈ 8p.

4. A given pattern of such error occurs with probabibility (8p)de(1 − 8p)d−de ≈ (8p)de . There are Cd,de =
d!/[(d− de)!de!] such patterns. This gives a logical error

pL = Cd,(d+1)/2(8p)(d+1)/2 (10)

5. In a 2D code, the logical error rate is approximately multiplied by d, because:

p
(2D)
L = (1− pL)d ≈ pLd = dCd,(d+1)/2(8p)(d+1)/2 (11)

For p < pc ≈ 0.03, the logical error rate decreases as d increases, i.e we can reach arbitrary accuracy by
adding physical qubits. This is the notion of fault tolerance.
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