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Quantum chemistry and the Jordan-Wigner transformation

We aim at implementing a quantum chemistry Hamiltonian

with

1.

3.

H= Z hpqa;r,aq + Z hpqma;ﬂagaras (1)
Pg

pgrs

A naive possibility to encode a fermion particle in terms of a qubit corresponds to a, = o, = [0), (1]. We
must ensure that fermionic operators satisfy anti-commutation relations

{apaaq} = {alvag} =0
{ap,af;} = Opg- (2)

For instance, the operators o, and o, do commute. Therefore, {0,,04} = 0p04 + 004 = 20404 # 0. This
means that the operators o, are not valid fermionic operators.

. Show that a, = ([T~} Zi)o, does the job.

p—1 qg—1 p—1 p—1
{ap,a} = apaq +aqap = (H Zi)ap(H Zj)og + (H ZJ>UQ(H Zi)op
i=1 j=1 Jj=1 J=1

q—1 q—1
UP(H Zi)oq + Uq(H Zi)op, (3)

where we assumed without loss of generality p < ¢q. If p = g, we obtain

{ap,ap} = 20, =0. (4)

If p < g, we use the identity 0,7, = —Z,0, to write

q—1 qg—1
{ap,aq} = _(H Z;)oq0p + (H Zi)oqop =0, (5)
i=p i=p
The second identity follows
{a;f,,a};} = a;ag + aga;) = {agy, ap}Jr =0 (6)
Finally
p—1 q—1 q—1 p—1
{ap, ajl} = ayal +ala, = (H Zi)apa;(H Z;) + a;(H Zj)(H Z;)op
i=1 j=1 j=1 i=1
qg—1 qg—1
= apof;(H Z;) +a;(H Z)op, (7)
i=p i=p
If p = q, we have
{ap, a;} = JPJ; + O’;O'p =1 (8)
If p < q, we have
qg—1
{ap,a};} = (JPU; - U:;UP)(H Z;)=0 9)
i=p

Propose a circuit to measure the operator (ala,), (afapi1 + he), (afagsps1 + he).

abay = ahoy = 1) (1 (10)



This is a standard local measurement.
alay =02 =of (11)
pp+1 = OpLpOp+1 = Tp0p+1
The expectation value of the hermitian operator is obtained as
a;(,ap+1 + he = (XpXpt1 + YpYp41)/2 (12)
This can be measured by first measuring X, X1, then Y,Y,;, and adding the two outcomes.

The second term can be measured using the relation Y = SX ST.
qg—1
aba, = o} ([] 2o (13)
i=p
Consequence: we will have to measure operators of the type XP(H;]:_; Z) X,

2 Quantum adiabatic theorem and quantum annealing

The quantum adiabatic theorem provides a key result to assess the performance of quantum optimization algorithms
based on quantum annealing.

1. We write [1(t)) = >, cn(t) |En(t)). The Schrodinger equation gives

o [(t)) = H()|v(t)
thcn )+ ea(®)[Ea() = D H@)|E() =) Ealt)[En(t)) (14)
Projecting
ihén(t) = fthcm ) | B (1)) + En(t) (15)
2. (E,(t) |E,(t)) = 1. Therefore _ )
(En(t) [ En(t)) + (En(t) [En(t)) = 0 (16)

This means that we have an imaginary term, which we write as h(E, () |E,(t)) = ie,(t). The equation of
motion become

ihén()+ = E,(t)ea(t) —ih > (E (t)) em(t) (17)

m#n

with E! (t) = E, + €,(t). We have H(t) |E,(t)) = E,(t) |En(t)). Therefore

H(t) | Bu(t)) + H(t) [En()) = Ea(t) | Bu(t)) + Ea(t) | En(t)) (18)

which gives for m # n

(En(OIH() [En(t)) + Eq(t)(En () | En(t)) = En(t){En(t) |Ea(t)) (19)
wich gives
" _ <Em(t)| H(t) |En(t)>
We obtain
- (En(| H(t) |Em(t))
ihén(t) = Ej(t)ea(t) — mm;l OO (21)
If

(Bn(t)] H(t) | En(t))
En(t) — En(t)

< |Em(t) - En(t)| (22)

the rates of diabatic transition is small compared to the energy differences. This means we can neglect this
transition and obtain an adiabatic evolution.
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