Quantum Algorithms: Exercices 6

Benoît Vermersch (benoit.vermersch@lpmmc.cnrs.fr) -December 5, 2022

1 Density matrix

The density matrix ρ summarizes all the physical properties of a quantum S, embedded in an environment E (For instance, think of a quantum computer S subject to a decoherence environment),

1. To introduce ρ , we first write the expectation value of an arbitrary operator $O = O_S \otimes 1$ acting on S, for a general wavefunction

$$|\psi\rangle = \sum_{m,n} c_{m,n} |m\rangle_S \otimes |n\rangle_E \tag{1}$$

describing the combined state of the system and environmement. Here, $\{|m\rangle_S\}$, $\{|n\rangle_E\}$ are orthonormal bases descring the system, environment respectively. Write this expectation value of O as a function of $\{c_{m,n}\}$.

2. We introduce the partial trace operation as

$$\operatorname{tr}_{E}(A) = \sum_{n} {}_{E} \left\langle n | A | n \right\rangle_{E} \tag{2}$$

The linear operation $_E \langle n | \cdot$ is defined as $_E \langle n' | (|m\rangle_S \otimes |n\rangle_E) = \delta_{n,n'} |m\rangle_S$. We define the density matrix of the system S as $\rho = \operatorname{tr}_E(|\psi\rangle \langle \psi|)$. Write ρ as a function of the decomposition $\{c_{m,n}\}$.

- 3. Show that $\langle \psi | O | \psi \rangle = \text{Tr}(\rho O_S)$. Comment
- 4. Show that ρ is Hermitian positive semi-definite, and that it has unit trace
- 5. Write how the density matrix evolves via a unitary operation U acting on the system S?

2 Pure states and decoherence

- 6. We introduce $p_2 = \text{tr}(\rho^2)$. Show that a 'pure state' $\rho = |\phi\rangle_S \langle \phi|$ associated with a decoupled environment $|\psi\rangle = |\phi\rangle_S |\phi\rangle_E$ has $p_2 = 1$. p_2 is called the purity and measures to which extent a system is decoupled from its environment.
- 7. Show that the purity is constant under unitary operation.
- 8. We introduce the depolarization channel \mathcal{L} of rate p, for a system of q qubits

$$\rho' = \mathcal{L}(\rho) = (1 - p)\rho + (p/2^q)\mathbf{1}$$
(3)

Calculate the purity of ρ' , and discuss the extreme cases p = 0, 1 for ρ a pure state

3 Quantum state tomography

9. Quantum state tomography describes a protocol to measure the density matrix ρ in a quantum computer with q qubits. It is based on decomposing ρ is a basis of 'Pauli strings' with $\sigma = \bigotimes_{i=1}^{q} \sigma_i, \sigma_i = 1_i, X_i, Y_i, Z_i$.

$$\rho = \sum_{\sigma} c_{\sigma} \sigma \tag{4}$$

Show that $\operatorname{Tr}(\sigma\sigma') = \delta_{\sigma,\sigma'}$ Write the expression of c_{σ} as a function of ρ and σ .

- 10. Write the probability to observe a given bitstring $s = s_1, \ldots, s_q$ as a function of the density matrix.
- 11. Using the identities X = HZH, $Y = SXS^{\dagger} = SHZHS^{\dagger}$, show that we can write a Pauli operator as $\sigma_i = U_i^{\dagger}(|0\rangle \langle 0| + \epsilon_i |1\rangle \langle 1|)U_i$.
- 12. Write a quantum circuit to measure each term c_{σ} , i.e to perform quantum state tomography.