Quantum Algorithms: Exercices 6

Benoît Vermersch (benoit.vermersch@lpmmc.cnrs.fr) -December 5, 2022

1 Density matrix

The density matrix ρ summarizes all the physical properties of a quantum S, embedded in an environment E (For instance, think of a quantum computer S subject to a decoherence environment),

1. To introduce ρ , we first write the expectation value of an arbitrary operator $O = O_S \otimes 1$ acting on S, for a general wavefunction

$$|\psi\rangle = \sum_{m,n} c_{m,n} |m\rangle_S \otimes |n\rangle_E \tag{1}$$

describing the combined state of the system and environmement. Here, $\{|m\rangle_S\}$, $\{|n\rangle_E\}$ are orthonormal bases descring the system, environment respectively. Write this expectation value of O as a function of $\{c_{m,n}\}$. Solution:

$$\langle \psi | O | \psi \rangle = \sum_{m,n,m'} c_{m,n}^* c_{m',n} \langle m | O_S | m' \rangle \tag{2}$$

2. We introduce the partial trace operation as

$$\operatorname{tr}_{E}(A) = \sum_{n} {}_{E} \langle n|A|n \rangle_{E}$$
(3)

The linear operation $_E \langle n | \cdot$ is defined as $_E \langle n' | (|m\rangle_S \otimes |n\rangle_E) = \delta_{n,n'} |m\rangle_S$. We define the density matrix of the system S as $\rho = \operatorname{tr}_E(|\psi\rangle \langle \psi|)$. Write ρ as a function of the decomposition $\{c_{m,n}\}$.

Solution:

$$\rho = \sum_{m,m',n,n',n''} c^*_{m,n} c_{m',n'E} \langle n'' | | m' \rangle_S \otimes | n' \rangle_E \langle m |_S \otimes \langle n |_E | n'' \rangle_E = \sum_{m,m',n} c^*_{m,n} c_{m',n} | m' \rangle_S \otimes \langle m |_S$$
(4)

3. Show that $\langle \psi | O | \psi \rangle = \text{Tr}(\rho O_S)$. Comment

Solution:

$$\operatorname{Tr}(\rho O_S) = \sum_{m,n,m'} c_{m,n}^* c_{m',n} \langle m | O_S | m' \rangle = \langle \psi | O | \psi \rangle$$
(5)

The expression of ρ allows us to extract the expectation value of any observable of the system.

4. Show that ρ is Hermitian positive semi-definite, and that it has unit trace **Solution:**

$$\rho^{\dagger} = \sum_{m,m',n} c_{m,n} c_{m',n}^* |m\rangle_S \otimes \langle m'|_S = \rho \tag{6}$$

For a given $\left|\phi\right\rangle=\sum_{l}\alpha_{l}\left|l\right\rangle$

$$\langle \phi | \rho | \phi \rangle = \sum_{l,l',n} (\alpha_l^* c_{l,n}) (\alpha_{l'} c_{l',n}^*) \ge 0 \tag{7}$$

$$\operatorname{Tr}(\rho) = \sum_{m,n} c_{m,n}^* c_{m,n} = 1$$
 (8)

5. Write how the density matrix evolves via a unitary operation U acting on the system S? Solution:

$$|\psi'\rangle = (U \otimes 1) |\psi\rangle \tag{9}$$

$$\rho' = \operatorname{Tr}_E[(U \otimes 1) |\psi\rangle \langle \psi| (U^{\dagger} \otimes 1)] = U\rho U^{\dagger}$$
(10)

2 Pure states and decoherence

6. We introduce $p_2 = \text{tr}(\rho^2)$. Show that a 'pure state' $\rho = |\phi\rangle_S \langle \phi|$ associated with a decoupled environment $|\psi\rangle = |\phi\rangle_S |\phi\rangle_E$ has $p_2 = 1$. p_2 is called the purity and measures to which extent a system is decoupled from its environment.

Solution:

$$p_2 = \operatorname{Tr}(|\phi\rangle \langle \phi| |\phi\rangle \langle \phi|) = \operatorname{tr}(|\phi\rangle \langle \phi|) = 1$$
(11)

7. Show that the purity is constant under unitary operation. Solution:

$$p_2(\rho') = \operatorname{Tr}(U\rho U^{\dagger} U\rho U^{\dagger}) = p_2 \tag{12}$$

8. We introduce the depolarization channel \mathcal{L} of rate p, for a system of q qubits

$$\rho' = \mathcal{L}(\rho) = (1 - p)\rho + (p/2^q)\mathbf{1}$$
(13)

Calculate the purity of ρ' , and discuss the extreme cases p = 0, 1 for ρ a pure state **Solution:**

$${}_{2}(\rho') = (1-p)^{2}p_{2} + 2p(1-p)/2^{q} + p^{2}/2^{q} = (1-p)^{2}p_{2} + p(2-p)/2^{q}$$
(14)

For ρ a pure state, we obtain $p_2(\rho') = p_2 = 1$ for p = 0, and $p_2(\rho') = 1/2^q$. Note that the state $1/2^q$ with purity $1/2^q$ is called the maximally mixed state.

3 Quantum state tomography

 p_{i}

9. Quantum state tomography describes a protocol to measure the density matrix ρ in a quantum computer with q qubits. It is based on decomposing ρ is a basis of 'Pauli strings' with $\sigma = \bigotimes_{i=1}^{q} \sigma_i, \sigma_i = 1_i, X_i, Y_i, Z_i$.

$$\rho = \sum_{\sigma} c_{\sigma} \sigma \tag{15}$$

Show that $\operatorname{Tr}(\sigma\sigma') = \delta_{\sigma,\sigma'}$ Write the expression of c_{σ} as a function of ρ and σ . Solution:

$$\operatorname{Tr}(\sigma\sigma') = \operatorname{Tr}(\bigotimes_{i} \sigma_{i}\sigma'_{i}) = \prod_{i} \operatorname{Tr}(\sigma_{i}\sigma'_{i}) = \prod_{i} \delta_{\sigma_{i},\sigma'_{i}} = \delta_{\sigma,\sigma'}$$
(16)

$$\operatorname{Tr}(\rho\sigma) = \sum_{\sigma'} \operatorname{Tr}(c'_{\sigma}\sigma\sigma') = c_{\sigma}2^{q}$$
(17)

10. Write the probability to observe a given bitstring $s = s_1, \ldots, s_q$ as a function of the density matrix. Solution: We have P(s) the expectation value of the operator $O = |s\rangle \langle s|$. So

$$P(s) = \operatorname{Tr}(\rho | s \rangle \langle s |) = \langle s | \rho | s \rangle$$
(18)

11. Using the identities X = HZH, $Y = SXS^{\dagger} = SHZHS^{\dagger}$, show that we can write a Pauli operator as $\sigma_i = U_i^{\dagger}(|0\rangle \langle 0| + \epsilon_i |1\rangle \langle 1|)U_i$.

Solution: For $\sigma_i = 1$, we take $U_i = 1$, and $\epsilon_i = 1$. For $\sigma_i = Z$, we take $U_i = 1$, and $\epsilon_i = -1$. For $\sigma_i = X$, we use $U_i = H$, $\epsilon_i = -1$,...

12. Write a quantum circuit to measure each term c_{σ} , i.e to perform quantum state tomography. Solution: We can write

$$\sigma = \sigma_1 \otimes \cdots \otimes \sigma_q = U_1'(|0\rangle \langle 0| + \epsilon_1 |1\rangle \langle 1|) U_1 \dots U_q^{\dagger}(|0\rangle \langle 0| + \epsilon_q |1\rangle \langle 1|)) U_q
= U^{\dagger}(\sum_s f_s |s\rangle \langle s|) U$$
(19)

with $U = U_1 \otimes \ldots U_q$ and f_s is a combination of the ϵ_i numbers, Therefore

$$c_{\sigma} = 2^{-q} \operatorname{Tr}(\rho U^{\dagger} \sum_{s} f_{s} |s\rangle \langle s| U) = \sum_{s} f_{s} P_{U}(s)$$
(20)

with $P_U(s) = \langle s | \rho_U | s \rangle$, $\rho_U = U \rho U^{\dagger}$ the state after application of the unitary U. This mean we can perform tomography by applying U on ρ , measuring the Born probabilities $P_U(s)$ and extracting c_{σ} via the above equations.